
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

FOG COMPUTING ARCHITECTURE
FOR E-TEXTILE APPLICATIONS

Ph.D. THESIS

Kadir ÖZLEM

Department of Computer Engineering

Computer Engineering Programme

DECEMBER 2024

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

FOG COMPUTING ARCHITECTURE
FOR E-TEXTILE APPLICATIONS

Ph.D. THESIS

Kadir ÖZLEM
(504182521)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Assoc. Prof. Dr. Gökhan İNCE
Co-Advisor: Assoc. Prof. Dr. Özgür ATALAY

DECEMBER 2024

İSTANBUL TEKNİK ÜNİVERSİTESİ ⋆ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

E-TEKSTİL UYGULAMALARI İÇİN
SİS BİLİŞ̧İM MİMARİSİ

DOKTORA TEZİ

Kadir ÖZLEM
(504182521)

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Tez Danışmanı: Doç. Dr. Gökhan İNCE
Eş Danışman: Doç. Dr. Özgür ATALAY

ARALIK 2024

Kadir ÖZLEM, a Ph.D. student of ITU Graduate School student ID 504182521 suc-
cessfully defended the thesis entitled “FOG COMPUTING ARCHITECTURE FOR
E-TEXTILE APPLICATIONS”, which he prepared after fulfilling the requirements
specified in the associated legislations, before the jury whose signatures are below.

Thesis Advisor : Assoc. Prof. Dr. Gökhan İNCE
Istanbul Technical University

Co-advisor : Assoc. Prof. Dr. Özgür ATALAY
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. İlkay ÖKSÜZ
Istanbul Technical University

Prof. Dr. Emine Dilara KOÇAK
Marmara University

Prof. Dr. Hürriyet YILMAZ
Formed Healthcare

Asst. Prof. Dr. Ayşe YILMAZER METİN
Istanbul Technical University

Prof. Dr. Ali Gökhan YAVUZ
Turkish-German University

Date of Submission : 27 November 2024
Date of Defense : 17 December 2024

v

vi

To my spouse,

vii

viii

FOREWORD

Firstly, I would like to express my gratitude to my thesis advisor, Assoc. Prof. Dr.
Gökhan İNCE. Throughout my master’s and doctoral journey, he has consistently stood
by my side and provided invaluable supervision. Additionally, collaborating with him
on faculty duties has been an honor for me. Secondly, I am indebted to my co-advisor,
Assoc. Prof. Dr. Özgür ATALAY, for his support and the opportunities he has provided
me. Through his guidance, I have had the chance to participate in numerous academic
studies. Additionally, I would like to extend my gratitude to Assist. Prof. Dr. Aslı
ATALAY. Engaging in brainstorming sessions with her to solve issues that emerged
in our projects has been a source of great pleasure for me. Being a part of the Soft
Sensors Laboratory team, formed alongside all three of my mentors, is an honor for
me.

I would like to express my gratitude to Prof. Dr. Emine Dilara KOÇAK, Prof.
Dr. Hürriyet YILMAZ, and Assoc. Prof. Dr. İlkay ÖKSÜZ, my thesis progress
committee, for their valuable contributions. The constructive feedback provided by
them throughout the course of my thesis has significantly enhanced the quality of my
work. The guidance they provided and their impact on my life is immensely valuable
to me. Additionally, from the academic and educational activities I engaged in with
them, I have learned a great deal. Therefore, I am especially grateful to them.

I am indebted to the Soft Sensors Laboratory team, of which I have been a part
since its inception. Contributing to each project within the team is a privilege
I deeply value. I would like to extend my gratitude, especially to Abdulkadir
PAZAR, Fidan KHALILBAYLI, Ayşe Feyza YILMAZ, and Çağatay GÜMÜŞ for
their contributions to the research work in this thesis. Furthermore, I would like
to express my gratitude to Selim Enes KILIÇASLAN, who provided assistance in
addressing the crucial aspect of connectivity issues between sensors and mobile
phones, which is one of the pivotal components of my thesis. In addition, I
would like to extend my thanks to Uğur AYVAZ, Hasbi SEVİNÇ, Cemal Fatih
KUYUCU, Meral KORKMAZ KUYUCU, Hend ELMOUGHNI, Ezgi PAKET,
Ömür Fatmanur ERZURUMLUOĞLU, İlknur ÇELİK, Nada AL-AZZAWI, İrem
YÜNCÜLER, Ibrahim AHMED, Mehmet Fatih ÇELEBİ, Münire Sibel ÇETİN, and
Bahman TAHERKHANI, with whom I collaborated and co-authored publications
during my doctoral studies. I would like to express my gratitude to all other
undergraduate, and graduate students as well as interns whose names I may have
omitted, for their contributions and efforts in our collaborative work.

I extend my thanks to the former Faculty Dean, Prof. Dr. Sema Fatma OKTUĞ, for the
support and trust extended to me since becoming a member of the faculty. Particularly,
I wish to express separate and special thanks to our former department chairs, Prof.
Dr. Mustafa Ersel KAMAŞAK and Prof. Dr. Sema Fatma OKTUĞ, for providing our
team with laboratory space and enabling the continuation of our work. Additionally,

ix

I express my gratitude to Assoc. Prof. Dr. Yusuf YASLAN, Assoc. Prof. Dr. Şerif
BAHTİYAR, and all other esteemed academic staff on the faculty who have guided
me. Furthermore, I would like to thank Lecturer Tacettin AYAR, who has been leading
the way for me since my first day at the faculty and has generously offered support in
every aspect. I would like to extend special thanks to Asst. Prof. Dr. Yusuf Hüseyin
ŞAHİN, who took on the administrative responsibilities of my courses, enabling me to
complete my thesis studies.

This thesis has been supported by a grant from the Scientific Research Project
Unit of Istanbul Technical University, Grant No: MDK-2021-43137. Moreover,
this work has received support from the European Research Council (ERC)
under the European Union’s Horizon Research and Innovation Programme Project
“Textile-Based Wearable Soft Robotics with Integrated Sensing, Actuating, and
Self-Powering Properties - TEXWEAROTS” (Grant No: 101042402), the EU Marie
Skłodowska-Curie IF Project “Textile-based Soft Sensing Actuators for Soft Robotic
Applications—TexRobots” (Grant No: 842786), the Scientific and Technological
Research Council of Türkiye (TUBITAK), project “Development of Textile-Based
Robotics for Drop Foot Syndrome” (Grant No: 120C118), TUBITAK project
“Fabric-Based Soft Actuators for Wearable Applications” (Grant No: 118M668),
and TUBITAK-IRASME project “’STEWART-Sports acTivitiEs With weARable
Technology’ (Grant No: 221N310). Additionally, I would like to extend our gratitude
to GitHub and JetBrains for providing their products free of charge during the
developmental phase of this study. Particularly, I wish to thank Digital Ocean for
generously providing us with free credits to conduct cloud testing.

Finally, and most importantly, I would like to express my gratitude to my mother,
father, and sister for their unwavering support throughout my thesis and my entire
educational journey, providing me with every opportunity. Especially, I would like to
express my gratitude to my partner, my wife, and my beloved Semanur for her support
and patience throughout the thesis process. Her support has always provided me with
motivation and the opportunity to complete my thesis to the best of my ability. Despite
occasionally disrupting my work by climbing onto me or biting my monitor, I would
like to thank to our cat, Mıncır, for providing entertainment and boosting my energy
during moments of exhaustion. I would also like to extend my special thanks to all my
relatives who supported me throughout the thesis period. Thanks for all.

DECEMBER 2024 Kadir ÖZLEM
(Research and Teaching Assistant)

x

TABLE OF CONTENTS

Page
FOREWORD . x
TABLE OF CONTENTS . xiii
ABBREVIATIONS. xv
SYMBOLS . xix
LIST OF TABLES . xxi
LIST OF FIGURES . xxv
SUMMARY .xxvii
ÖZET . xxxi
1. INTRODUCTION . 1

1.1 Purpose of the Thesis . 3
1.2 Contribution of the Thesis . 4
1.3 Organization of the Thesis. 6

2. LITERATURE REVIEW . 7
2.1 Electronic Textiles . 7

2.1.1 Sensors. 7
2.1.1.1 Textile based resistive sensors . 8
2.1.1.2 Textile based capacitive sensors . 9
2.1.1.3 Textile based inductive sensors . 11
2.1.1.4 Textile electrodes . 11

2.1.2 Actuators . 12
2.1.2.1 Cable driven textile actuators . 13
2.1.2.2 Fluidic textile actuators . 13
2.1.2.3 Shape-changing actuators . 14

2.2 Applications . 15
2.2.1 Gait phase recognition system . 15
2.2.2 Assistive soft robotic control . 16

2.3 Computing Systems. 18
2.3.1 Cloud computing . 18
2.3.2 Edge computing . 21
2.3.3 Fog computing . 23

2.3.3.1 Fog computing in smart cities . 23
2.3.3.2 Fog computing in connected vehicles . 24
2.3.3.3 Fog computing in smart grid . 25
2.3.3.4 Fog computing in smart homes . 26
2.3.3.5 Fog computing in healthcare . 26
2.3.3.6 Fog computing in non-textile wearables . 27
2.3.3.7 Fog computing in e-textiles . 30

2.4 Positioning of the Thesis . 30
3. FogETex FRAMEWORK . 33

3.1 Hardware Components . 33
3.1.1 Textile-based IoT devices . 33
3.1.2 Gateway devices. 35
3.1.3 Broker nodes . 36
3.1.4 Worker nodes . 36
3.1.5 Cloud . 37

3.2 Software Components . 38
3.2.1 Resource manager . 39
3.2.2 Computing module . 43

3.2.2.1 Data preprocessing module . 43
3.2.2.2 Deep learning module . 44

3.2.3 Proxy module. 44
3.2.4 User interface. 45

xi

3.3 Network Structure . 47
3.3.1 RESTful API communication . 48
3.3.2 Socket communication . 50
3.3.3 Scalability handling . 52

3.4 Concurrency Control Techniques . 52
3.4.1 Single-threaded data processing via WebSocket IPC. 53
3.4.2 Multi-threaded data processing via WebSocket IPC 54
3.4.3 Multi-process data processing via WebSocket IPC . 55
3.4.4 Multi-process data processing via RESTful API . 55
3.4.5 Multi-process data processing via FIFO IPC . 56

4. GAIT PHASE RECOGNITION SYSTEM USING FogETex 59
4.1 T-IoT Device Design. 59

4.1.1 Measurement based on textile-based capacitive strain sensor 60
4.1.2 Measurement based on IMU sensor . 61

4.2 Data Labeling . 62
4.3 Dataset . 63
4.4 Data Preprocessing. 63
4.5 Deep Learning Model. 64
4.6 Experiments . 64

4.6.1 Experimental setup . 65
4.6.1.1 Wi-Fi testbed . 65
4.6.1.2 Cellular testbed . 67

4.6.2 Experimental scenarios . 67
4.6.3 Evaluation criteria . 69

4.6.3.1 Prediction accuracies . 69
4.6.3.2 Time characteristics . 70
4.6.3.3 Device resource usage. 70
4.6.3.4 Network bandwidth usage . 71
4.6.3.5 Stress test . 71

4.7 Results . 71
4.7.1 Results on prediction accuracies . 71
4.7.2 Results on time performance . 72
4.7.3 Results on resource usage. 78
4.7.4 Results on network bandwidth usage . 79
4.7.5 Stress test . 79
4.7.6 Performance benchmarking. 81

4.8 Discussion . 82
4.9 Limitations . 83
4.10 Conclusion . 84

5. ASSISTIVE SOFT ROBOTIC GLOVE CONTROL USING FogETex 87
5.1 System Architecture and Material Designs . 88

5.1.1 Design of the sensing T-IoT glove . 88
5.1.2 Design of the actuating T-IoT glove. 89

5.2 Data Processing . 90
5.2.1 Data processing in the sensing T-IoT glove . 91
5.2.2 Data processing in the cloud architecture . 92
5.2.3 Control of the actuating T-IoT glove . 94

5.3 Experiments . 95
5.3.1 Characterization of T-IoT gloves . 95
5.3.2 Dataset and labelling . 96
5.3.3 Experimental setup . 100
5.3.4 Evaluation criteria . 102

5.3.4.1 Accuracy criteria . 103
5.4 Results . 103

5.4.1 Characterization of sensing T-IoT gloves . 104
5.4.2 Characterization of actuating T-IoT gloves . 105
5.4.3 Results on accuracy . 105
5.4.4 Results on time performance . 109
5.4.5 Results on resource usage. 113
5.4.6 Results on network bandwidth usage . 114
5.4.7 Results on concurrency control techniques . 114
5.4.8 Discussion . 120

xii

5.5 Conclusion . 121
6. CONCLUSION . 123
REFERENCES . 127
APPENDICES . 153

APPENDIX A : Assistive Soft Robotic Glove Control Supporting Information 155
CURRICULUM VITAE . 164

xiii

xiv

ABBREVIATIONS

3D : Three-dimensional
4G : the fourth-generation technology standard for cellular networks
5G : The fifth-generation technology standard for cellular networks
ADSL : Asymmetric Digital Subscriber Line
AI : Artificial Intelligence
AP : Access Point
API : Application Programming Interface
ARM : Advanced RISC Machine / Acorn RISC Machine
AWS : Amazon Web Services
BLE : Bluetooth Low Energy
CN : Candidate Node
CNT : Carbon NanoTube
COVID-19 : COronaVIrus Disease 2019
CPU : Central Processing Unit
CTMC : Continuous-Time Markov Chain
CV : Connected Vehicles
DDR : Double Data Rate
DP : Distal Phalanx
DT : Decision Tree
E-commerce : Electronic Commerce
E-textile : Electronic Textile
ECG : ElectroCardioGram
EEG : ElectroEncephaloGram
EKG : ElektroKardiyoGram (in Turkish)
EMG : ElectroMyoGram
FIFO : First In First Out
FogETex : Fog Computing Framework for Electronic Textile Applications
FOV : Field Of View
GIL : Global Interpreter Lock
GUI : Graphical User Interface
Gym : GYMnasium
HF : HealthFog System
HTTP : Hyper-Text Transfer Protocol
I2C : Inter-Integrated Circuit
IaaS : Infrastructure as a Service
IEEE : Institute of Electrical and Electronics Engineers
IMU : Inertial Measurement Unit
iOS : iPhone Operating System
IoT : Internet of Things
IP : Internet Protocol
ISP : Internet Service Provider

xv

IT : Information Technology
KNN : K-Nearest Neighbors
KVM : Kernel-based Virtual Machine
LAN : Local Area Network
LiPo : Lithium Polymer
LoRaWAN : Long Range Wide Area Network
LPDDR : Low-Power Double Data Rate
LR : Logistic Regression
LSTM : Long Short-Term Memory
LTE : Long-Term Evolution
MATLAB : MATrix LABoratory
MCP : MetaCarpoPhalangeal joint
MEMS : MicroElectroMechanical Systems
ML : Machine Learning
MLP : Multilayer Perceptron
PaaS : Platform as a Service
PAM : McKibben/Pneumatic Artificial Muscle
PAN : Personal Area Network
PCT : Patent Cooperation Treaty
PDA : Personal Data Assistant
PIP : Proximal InterPhalangeal joint
PPG : PhotoPlethysmoGraphy
QoS : Quality of Service
RAM : Random-Access Memory
REST : REpresentational State Transfer
RFID : Radio-Frequency IDentification
SaaS : Software as a Service
SD : Standard Deviation
SDHC : Secure Digital High Capacity
SDN : Software-Defined Network
SDRAM : Synchronous Dynamic Random-Access Memory
SMA : Shape Memory Alloys
SMP : Shape Memory Polymer
SOAP : Symbolic Optimal Assembly Program
SoC : System-on-Chip
SQC : Signal Quality and Comfort
SSD : Solid-State Drive
T-IoT : Textile-based Internet of Things
TCP : Transmission Control Protocol
TLS : Traffic Light System
TPU : Thermoplastic PolyUrethane
USA : United State of America
USB : Universal Serial Bus
VDSL : Very High-speed Digital Subscriber Line
VFC : Vehicular Fog Computing
VPS : Virtual Private Server
WAN : Wide Area Network

xvi

Web : World Wide Web
Wi-Fi : Wireless Fidelity
XGB : eXtreme Gradient Boosting
XGBoost : eXtreme Gradient Boosting
YOLO : You Only Look Once

xvii

xviii

SYMBOLS

α : Angle formed by the DP and MCP points at the PIP point
β : Angle of the arc formed by the bending of the finger
∆λ : Difference between the longitudes of the user and CN
∆φ : Disparity between the latitudes of the user and CN
θ : Angular distance between two points
µ : Mean of feature
σ : Standard deviation of feature
φ1 : Latitude of the user
φ2 : Latitude of the Candidate Node
a : Square of half the cord length between two points
c : Class number
C : Capacitance
Cmin : Minimum capacitance value
Cre f : Stray capacitance
Cx : Capacitance value of the sensor
d : Distance between the user and CN
F1c : F1 score for class c
FNc : False negative prediction of class c
FN : False negative
FPc : False positive prediction of class c
FP : False positive
I : Current
M : Number of classes
n : Input size of the function
N : Sample numbers
O : Computational Complexity
Pc : Precision score for class c
Q : Stored charge
Rc : Recall score for class c
R : Mean radius of the Earth
Scorec : Score of the c-th class
T : Charging time
T N : True negative
T Pc : True positive prediction of class c
T P : True positive
Vdd : Supply voltage
Vin : Input voltage
Vout : Supply voltage
V : Voltage
x : Feature value

xix

yc : True probability of the class
yi : Actual label of the i-th sample
ŷc : Predicted probability of the class
ŷi : Predicted label of the i-th sample
Z : Normalized feature value

xx

LIST OF TABLES

Page

Table 4.1 : Demographic information of test subjects. 63
Table 4.2 : Comparison performance of FogETex with other works. 81
Table 5.1 : Test Subject Demographic Information . 97
Table 5.2 : Model Parameters of The Classifiers. 102
Table 5.3 : F1 Scores of Individual Finger Models . 107
Table 5.4 : Average Performance of All Models . 107

xxi

xxii

LIST OF FIGURES

Page

Figure 1.1 : Focus area of the thesis. 4
Figure 3.1 : General Overview of the Proposed System Architecture. 34
Figure 3.2 : FogETex Hardware and Software Components. 37
Figure 3.3 : Worker User Interface. 45
Figure 3.4 : Broker User Interface. 46
Figure 3.5 : Cloud User Interface. 46
Figure 3.6 : Gateway Device Graphical User Interface. 48
Figure 3.7 : Connection Diagram of Users with A Fog Node in their LAN. 49
Figure 3.8 : Connection Diagram of Users Without a Fog Node in their LAN.. . . 50
Figure 3.9 : Single-threaded Data Processing via WebSocket IPC. 53
Figure 3.10 :Multi-threaded Data Processing via WebSocket IPC 54
Figure 3.11 :Multi-process Data Processing via WebSocket IPC.. 55
Figure 3.12 :Multi-process Data Processing via RESTful API. 56
Figure 3.13 :Multi-process Data Processing via FIFO IPC. 56
Figure 4.1 : T-IoT Device for Gait Phase Recognition System: a) Actual Photo

and b) Schematic Illustration. 60
Figure 4.2 : T-IoT Device Placement on the Knee and IMU Axes (X and Z). 61
Figure 4.3 : Gyro-z data. 62
Figure 4.4 : Experimental Setup Device Connection Diagram. 66
Figure 4.5 : Model train loss. 72
Figure 4.6 : Macro F1 scores of trained model. 73
Figure 4.7 : Confusion matrix of trained model. 73
Figure 4.8 : Arbitration time in different scenarios. 74
Figure 4.9 : Latency in different devices and testbeds. 75
Figure 4.10 :Queuing delay in different devices and testbeds. 76
Figure 4.11 :Execution time in different devices and testbeds. 77
Figure 4.12 :Total response time in different devices and testbeds. 77
Figure 4.13 :Jitter in different devices and testbeds. 78
Figure 4.14 :CPU and memory usage in different devices and testbeds. 79
Figure 4.15 :Network bandwidth usage in different devices and testbeds. 80
Figure 4.16 :Mean response time in different devices with varying numbers of

users. 80
Figure 5.1 : Telerehabilitation over the cloud with the medical staff wearing a

sensing T-IoT glove and the human patient wearing an actuating
T-IoT glove for telerehabilitation: a) Sensing T-IoT glove, b)
Actuating T-IoT glove. 88

Figure 5.2 : System architecture of sensor and control signals transmission. 91

xxiii

Figure 5.3 : Label Configuration for Bending Angle Calculation of Finger
Movement: (a) Label Placement on the Index Finger, (b) Bending
Arc Representation of Label Positions. 96

Figure 5.4 : a) Sensing T-IoT glove and its fingers. b) Sensing T-IoT glove
calibration and fist movement: open hand and close hand. c) Single
finger closing and opening: I. Thumb, II. Index, III. Middle, IV.
Ring, V. Pinkie. d) Motions with a combination of fingers closing
and opening: I. Open thumb and other fingers close, II. Cylindrical
pinch with thumb and index, III. Cylindrical pinch with thumb and
middle, IV. Cylindrical pinch with thumb and ring, V. Cylindrical
pinch with thumb and pinkie. 98

Figure 5.5 : a) Sensing T-IoT glove calibration and fist movement: open hand
and close hand. b) Actuating T-IoT glove calibration and fist
movement: open hand and close hand. c) Sensing T-IoT Glove
single finger closing and opening: I. Thumb, II. Index, III. Middle,
IV. Ring, V. Pinkie. d) Actuating T-IoT Glove single finger closing
and opening: I. Thumb, II. Index, III. Middle, IV. Ring, V. Pinkie. . . 99

Figure 5.6 : Experimenter Graphical User Interface of the Sensing T-IoT Glove
Data Acquisition and Labelling System. 99

Figure 5.7 : T-IoT Glove Finger Sensor Virtualization Interface. 101
Figure 5.8 : Capacitance Change of Textile-based Sensor During Index Finger

Movement. 104
Figure 5.9 : Change of Index Finger Bending Angle During Flexion and

Extension Movement of Textile-based Actuator. 106
Figure 5.10 :Confusion Matrices of Random Forest Classifier for Different

Fingers. 108
Figure 5.11 :Arbitration time for different classifiers. 109
Figure 5.12 :Latency for different classifiers. 110
Figure 5.13 :Queuing delay for different classifiers. 111
Figure 5.14 :Execution time for different classifiers. 112
Figure 5.15 :Total response time for different classifiers.. 112
Figure 5.16 :Jitter for different classifiers. 113
Figure 5.17 :CPU and memory usage for different classifiers. 114
Figure 5.18 :Network bandwidth for different classifiers. 115
Figure 5.19 :Stress test results of multi-threaded data processing via WebSocket

IPC.. 116
Figure 5.20 :Stress test results of multi-process data processing via WebSocket

IPC.. 117
Figure 5.21 :Stress test results of multi-process data processing via RESTful IPC.118
Figure 5.22 :Stress test results of multi-process data processing via FIFO IPC. . . 118
Figure 5.23 :Performance comparison of various concurrency control techniques. 119
Figure 5.24 :Performance comparison of multi-worker and cloud. 120
Figure A.1 : Confusion Matrices of Logistic Regression Classifier for Different

Fingers. 155
Figure A.2 : Confusion Matrices of Decision Tree Classifier for Different Fingers.156
Figure A.3 : Confusion Matrices of K-Nearest Neighbors Classifier for

Different Fingers. 157

xxiv

Figure A.4 : Confusion Matrices of Multi-layer Perceptron Classifier for
Different Fingers. 158

Figure A.5 : Confusion Matrices of XGBoost Classifier for Different Fingers. . . . 159

xxv

xxvi

FOG COMPUTING ARCHITECTURE
FOR E-TEXTILE APPLICATIONS

SUMMARY

Textile products are present in almost every aspect of human life. With the introduction
of electronic textiles, textile products have become capable of converting various
physiological and environmental stimuli into electrical signals, many of which are of
vital importance to humans. Therefore, these products require real-time (low-latency)
and robust computing systems. However, due to comfort considerations, they cannot
accommodate powerful computing resources.

In this thesis study, a novel Fog computing-based framework for Electronic Textiles
(FogETex) is proposed to meet the needs of e-textile applications. FogETex is a
Platform-as-a-Service (PaaS) model that is cross-platform supported, scalable, and
operates in real-time. This framework encompasses end-to-end integration of the
system including Textile-based Internet of Things (T-IoT) devices, fog devices, and
the cloud.

The FogETex framework consists of a three-layer architecture: the edge layer, the fog
layer, and the cloud layer. The edge layer includes T-IoT devices that collect data
from e-textile sensors and transmit it to the gateway device. Gateways are typically
mobile phones that users carry in their daily lives. These devices are responsible for
forwarding the collected data to the fog layer and visualizing the processed data. If the
T-IoT device is equipped with its own Wi-Fi or LTE module, it can directly transmit
data to the fog layer without requiring a gateway device.

The second layer includes broker and worker devices. The worker device is responsible
for handling incoming computational requests, while the broker device manages the
fog node. The broker monitors resource utilization data sent in real time by the worker
devices at regular intervals to determine if any devices are overloaded. Based on
resource usage, the broker assigns the most suitable worker device when a new user
connects to the fog node. For security reasons, only the broker device within the fog
node has a connection to devices on the Wide Area Network (WAN). As a result, in
outdoor applications, data is transferred to the worker devices via the broker. In this
setup, the broker acts as a proxy between the worker devices and the users.

The third and top layer is the cloud. The cloud device assigns users to an
appropriate fog node based on availability information provided by the broker.
While the cloud determines the suitable fog node, it does not interfere with the
worker assignments within the fog node itself. This structure ensures decentralized
management. Even if one node fails, the others can continue performing their
tasks independently. Additionally, the cloud and broker devices, besides managing
their primary responsibilities, are also capable of providing computational services.

xxvii

Therefore, during system overloads, these devices can step in to serve users, ensuring
continued functionality.

Since e-textile sensors generate time-series data and many sensors collect tens of data
points per second, communication between the gateway device and the worker device
is established using a WebSocket structure. This approach eliminates the need to
repeatedly establish connections for every data transmission, enabling asynchronous
and bidirectional data flow. On the other hand, operations such as device allocation
requests made by the user to the cloud or broker are one-time processes and are
managed via a RESTful API developed specifically for this purpose. Additionally, each
device is equipped with a user interface that allows system administrators to monitor
the status of the devices. This data can be utilized to make decisions about provisioning
additional devices for overloaded fog nodes, ensuring optimal system performance.

To bring this thesis to fruition and understand the nature of the e-textile applications,
a variety of applications were developed using electronic textiles in areas such as
gait phase detection and hand motion recognition. On the other hand, to ensure
that the developed framework functions as a comprehensive end-to-end system rather
than a data processing platform, research was also conducted in textile-based soft
robotics, another domain of smart textiles. These efforts include exoskeleton gloves
for individuals with muscle weakness. Selected case scenarios from these applications
were used to test the FogETex system.

For the first application of the proposed framework, a deep learning-based gait phase
analysis application using textile-based capacitive sensors is employed. In this case
study, knee movements were captured using a textile-based capacitive sensor placed
on the test subject’s knee. The sensor data was converted into gait phases using a deep
learning-based machine learning method. In the next stage, these gait phase data are
intended to be used as control signals for the artificial muscle actuator developed for
foot drop treatment.

FogETex was evaluated in terms of time characteristics, resource usage, and network
bandwidth usage using a mock client to determine the ideal system performance and
an actual client to conduct real-world tests. All these tests were repeated on worker,
broker, and cloud devices to validate indoor applications. Additionally, for outdoor
applications, tests were conducted by connecting worker and cloud devices through
WAN. The broker device acted as a proxy between the worker device and the user in
this test. The fog devices outperformed the cloud system in these metrics.

In this case scenario, the performance of the FogETex framework was analyzed across
different devices in applications with a single sensor. Additionally, a stress test was
conducted to evaluate the framework’s capability to handle multiple users. It was found
that worker devices could serve up to 6 users, broker devices up to 18, and the cloud
up to 14 users. The system demonstrated superior performance when three or more
worker devices were employed compared to other configurations. Considering rental
and device costs, the worker devices were deemed more cost-effective in terms of
performance. Lastly, the FogETex framework was compared with other systems in the
literature that could serve as competitors and are widely used in various studies. The
comparison revealed that FogETex outperformed its counterparts in metrics such as
latency, execution time, response time, and operational frequency.

xxviii

To demonstrate the versatile applicability of the proposed FogETex framework further,
a cloud-based remote manipulation system was developed, integrating e-textiles and
textile-based soft robotic systems. The objective of this research is to combine a
textile-based sensorized glove with an air-driven soft robotic glove, operated wirelessly
using the developed control system architecture. The sensing glove equipped with
capacitive sensors on each finger captures the movements of the medical staff’s hand.
Meanwhile, the pneumatic rehabilitation glove designed to aid patients affected by
impaired hand function due to stroke, brain injury, or spinal cord injury replicates
the movements of the medical personnel. The proposed artificial intelligence-based
system detects finger gestures and actuates the pneumatic system, responding within
an average response time of 48.4 ms. The evaluation of the system further in terms
of accuracy and transmission quality metrics verifies the feasibility of the proposed
system integrating textile gloves into IoT infrastructure, enabling remote motion
sensing and actuation. In addition, the system was tested using various concurrency
and inter-process communication methods. The system was also tested with multiple
worker devices. It was observed that the system could serve up to 10 devices with 1
worker, up to 22 devices with 2 workers, up to 26 devices with 3 workers, and up to 23
devices with the cloud system.

On the other hand, this research also tested the FogETex system in multi-sensor
e-textile applications. Models developed using various machine learning methods were
introduced to the system as different applications, demonstrating that the framework
can run multiple applications simultaneously. Although the framework was designed
as a fog computing architecture, it can also operate exclusively as a cloud or edge
computing system. In this study, it was confirmed that the framework can function
effectively even without fog devices. Furthermore, the developed system successfully
integrated e-textiles and soft robotics, proving its capability to operate as a complete
end-to-end solution.

The results from both applications demonstrated that the FogETex framework operates
in real-time and with robust performance. While the primary goal of the FogETex
system is to be utilized in e-textile applications, it can also process signals generated by
e-textiles to control textile-based soft robotic structures. Thus, it serves as a framework
that encompasses both e-textiles and soft robotics domains. Besides being developed
primarily for electronic textile applications, FogETex framework can accommodate
other IoT devices as well.

xxix

xxx

E-TEKSTİL UYGULAMALARI İÇİN
SİS BİLİŞ̧İM MİMARİSİ

ÖZET

Tekstil ürünleri, insan yaşamının hemen her alanında yer almaktadır. Elektronik
tekstillerin ortaya çıkışıyla birlikte, tekstil ürünleri çeşitli fizyolojik ve çevresel
uyarıları elektrik sinyallerine dönüştürme yeteneğine kavuşmuştur ve bunların birçoğu
insanlar için hayati öneme sahiptir. Bu nedenle, bu ürünlerin gerçek zamanlı (düşük
gecikmeli) ve sağlam bilgi işlem sistemlerine ihtiyaçları vardır. Ancak, konfor
gereklilikleri nedeniyle güçlü bilgi işlem kaynaklarına yer verilememektedir.

Bu tez çalışmasında, e-tekstil uygulamalarının ihtiyaçlarını karşılamak için yeni bir
sis bilişim tabanlı çerçeve (FogETex) önerilmiştir. FogETex, platformlar arası destek
sunan, ölçeklenebilir ve gerçek zamanlı çalışan bir Hizmet Olarak Platform (PaaS)
modelidir. Bu çerçeve, Tekstil tabanlı Nesnelerin İnterneti (T-IoT) cihazları, sis
cihazları ve bulut dahil olmak üzere sistemin uçtan uca entegrasyonunu kapsamaktadır.

FogETex çerçevesi, uç katman, sis katmanı ve bulut katmanı olmak üzere üç katmanlı
bir mimariden oluşmaktadır. Uç katman, e-tekstil sensörlerinden veri toplayan ve
bu verileri ağ geçidi cihazına ileten T-IoT cihazlarını içerir. Ağ geçitleri genellikle
kullanıcıların günlük yaşamlarında taşıdığı mobil telefonlardan oluşmaktadır. Bu
cihazlar, toplanan verileri sis katmanına iletmek ve işlenen verileri görselleştirmekle
sorumludur. Eğer T-IoT cihazı kendi Wi-Fi veya LTE modülüne sahipse, bir ağ geçidi
cihazına ihtiyaç duymadan verileri doğrudan sis katmanına iletebilir.

İkinci katman, aracı (broker) ve işçi (worker) cihazlarını içerir. İşçi cihazı, gelen
işlem taleplerini yönetmekten sorumluyken, aracı cihaz sis düğümünü yönetir. Aracı,
işçi cihazları tarafından düzenli aralıklarla gerçek zamanlı olarak gönderilen kaynak
kullanımı verilerini izler ve herhangi bir cihazın aşırı yüklenip yüklenmediğini belirler.
Kaynak kullanımına bağlı olarak, yeni bir kullanıcı sis düğümüne bağlandığında, aracı
en uygun işçi cihazını atar. Güvenlik nedenleriyle, sis düğümü içinde yalnızca aracı
cihazın Geniş Alan Ağı’ndaki (WAN) cihazlarla bağlantısı bulunur. Bu nedenle, dış
mekan uygulamalarında veriler aracı cihaz aracılığıyla işçi cihazlarına aktarılır. Bu
yapıda, aracı, işçi cihazları ile kullanıcılar arasında bir vekil (proxy) görevi görür.

Üçüncü ve en üst katman, buluttur. Bulut cihazı, aracının sağladığı kullanılabilirlik
bilgilerine dayalı olarak kullanıcıları uygun bir sis düğümüne atar. Bulut, uygun sis
düğümünü belirlerken, sis düğümündeki işçi atamalarına müdahale etmez. Bu yapı,
merkeziyetsiz bir yönetim sağlar. Bir düğüm arızalansa bile, diğer düğümler bağımsız
olarak görevlerini yerine getirmeye devam edebilir. Ayrıca, bulut ve aracı cihazları,
birincil sorumlulukları olan yönetimin yanı sıra, işlem hizmetleri sağlama kapasitesine
de sahiptir. Bu nedenle, sistem aşırı yük altında olduğunda, bu cihazlar kullanıcıları
hizmet vermek için devreye girebilir ve işlevselliğin devamını sağlar.

xxxi

E-tekstil sensörleri zaman serisi verisi ürettiği ve birçok sensör saniyede onlarca veri
noktası topladığı için, ağ geçidi cihazı ile işçi cihazı arasındaki iletişim WebSocket
yapısı kullanılarak kurulmuştur. Bu yaklaşım, her veri iletimi için bağlantıların
tekrar tekrar kurulmasına gerek kalmadan, asenkron ve iki yönlü veri akışını
mümkün kılar. Diğer taraftan, kullanıcının buluta veya aracıya yaptığı cihaz tahsis
talepleri gibi işlemler bir kerelik işlemler olup, bu amaçla özel olarak geliştirilen bir
RESTful API üzerinden yönetilmektedir. Ayrıca, her cihaz, sistem yöneticilerinin
cihazların durumunu izlemelerini sağlayan bir kullanıcı arayüzü ile donatılmıştır.
Bu veriler, aşırı yüklenmiş sis düğümleri için ek cihazların sağlanmasına yönelik
kararlar alınmasında kullanılabilmektedir ve sistem performansının optimal seviyede
tutulmasını sağlamaktadır.

Bu tezin hayata geçirilmesi ve e-tekstillerin doğasının anlaşılabilmesi için, adım fazı
tespiti ve el haraketi yakalama gibi alanlarda elektronik tekstiller kullanılarak çeşitli
uygulamalar geliştirilmiştir. Öte yandan, geliştirilen çerçevenin yalnızca bir veri
işleme platformu değil, kapsamlı bir uçtan uca sistem olarak işlev görmesini sağlamak
amacıyla, akıllı tekstillerin bir diğer alanı olan tekstil tabanlı yumuşak robotlar üzerine
de araştırmalar yapılmıştır. Bu çalışmalar, kas zayıflığı olan bireyler için dış iskelet
eldivenleri sistemlerini içermektedir. Bu uygulamalardan seçilen vaka senaryoları,
FogETex sistemini test etmek için kullanılmıştır.

Önerilen çerçevenin ilk uygulaması olarak, tekstil tabanlı kapasitif sensörler kullanarak
derin öğrenme tabanlı bir yürüme evresi analiz uygulaması kullanılmıştır. Bu
vaka çalışmasında, diz hareketleri, test konuğunun dizine yerleştirilen tekstil tabanlı
kapasitif bir sensör ile yakalanmıştır. Sensör verileri, derin öğrenme tabanlı bir makine
öğrenmesi yöntemi kullanılarak yürüme evrelerine dönüştürülmüştür. Bir sonraki
aşamada, bu yürüme evresi verilerinin, ayak düşüklüğü tedavisi için geliştirilen yapay
kas aktüatörü için kontrol sinyalleri olarak kullanılması planlanmaktadır.

FogETex, ideal sistem performansını belirlemek amacıyla bir sahte istemci
kullanılarak ve gerçek dünyadaki testleri yapmak için gerçek bir istemci kullanılarak,
zaman özellikleri, kaynak kullanımı ve ağ bant genişliği kullanımı açısından
değerlendirildi. Tüm bu testler, iç mekan uygulamaları için doğrulama yapmak
amacıyla işçi, aracı ve bulut cihazları üzerinde tekrarlanmıştır. Ayrıca, dış
mekan uygulamaları için işçi ve bulut cihazları WAN üzerinden bağlanarak testler
gerçekleştirilmiştir. Aracı cihaz, bu testte işçi cihazı ile kullanıcı arasında bir
vekil olarak görev yapmaktadır. Sis cihazları, bu metriklerde bulut sistemini geride
bırakmıştır.

Bu vaka senaryosunda, FogETex çerçevesinin performansı, tek bir sensörle yapılan
uygulamalarda farklı cihazlar arasında analiz edilmiştir. Ayrıca, çerçevenin birden
fazla kullanıcıyı yönetme kapasitesini değerlendirmek için bir stres testi yapılmıştır.
Yapılan testlerde, işçi cihazlarının 6 kullanıcıya kadar hizmet verebildiği, aracı
cihazlarının 18, bulut cihazlarının ise 14 kullanıcıya kadar hizmet verebildiği
bulunmuştur. Sistem, üç veya daha fazla işçi cihazı kullanıldığında, diğer
yapılandırmalara kıyasla üstün performans sergilemiştir. Kiralama ve cihaz maliyetleri
göz önünde bulundurulduğunda, işçi cihazlarının performans açısından daha maliyet
etkin olduğu değerlendirilmiştir. Son olarak, FogETex çerçevesi, literatürdeki diğer
sistemlerle karşılaştırılmış ve bu sistemlerin, çeşitli çalışmalarda yaygın olarak

xxxii

kullanılan rakipler olarak değerlendirildiği görülmüştür. Karşılaştırma, FogETex’in
gecikme, yürütme süresi, yanıt süresi ve işlem frekansı gibi metriklerde rakiplerini
geride bıraktığını ortaya koymuştur.

Önerilen FogETex çerçevesinin çok yönlü uygulanabilirliğini daha da göstermek
için e-tekstil ve tekstil tabanlı yumuşak robotik sistemlerin entegrasyonunu içeren
bulut tabanlı bir uzaktan manipülasyon sistemi geliştirilmiştir. Bu araştırmanın
amacı, geliştirilen kontrol sistemi mimarisi kullanılarak kablosuz olarak çalıştırılan,
tekstil tabanlı sensörlü bir eldiven ile hava tahrikli bir yumuşak robotik eldiveni
birleştirmektir. Her bir parmağa kapasitif sensörler yerleştirilmiş sensörlü eldiven,
tıbbi personelin el hareketlerini yakalar. Bu sırada, felç, beyin yaralanması veya
omurilik yaralanması nedeniyle el fonksiyonu bozulmuş hastalara yardımcı olmak
amacıyla tasarlanan pnömatik rehabilitasyon eldiveni, tıbbi personelin hareketlerini
taklit etmektedir. Önerilen yapay zeka tabanlı sistem, parmak jestlerini algılar
ve pnömatik sistemi harekete geçirir, ortalama yanıt süresi 48.4 ms içinde yanıt
vermektedir. Sistemin doğruluk ve iletim kalitesi metrikleri açısından yapılan
değerlendirme, tekstil eldivenlerinin IoT altyapısına entegrasyonunu ve uzaktan
hareket algılama ve aktüatörlük sağlama işlevselliğini doğrulamaktadır.

Öte yandan, bu araştırma, FogETex sistemini çoklu sensörlü e-tekstil uygulamalarında
da test edilmesini sağlamıştır. Farklı makine öğrenmesi yöntemleri kullanılarak
geliştirilen modeller, sistemi farklı uygulamalar olarak tanıtarak, çerçevenin birden
fazla uygulamayı aynı anda çalıştırabileceğini göstermiştir. Çerçeve, bir sis bilişim
mimarisi olarak tasarlanmış olsa da, yalnızca bir bulut veya uç bilişim sistemi olarak
da çalışabilmektedir. Bu çalışmada, çerçevenin sis cihazları olmadan da etkili bir
şekilde çalışabileceği doğrulanmıştır. Ayrıca, geliştirilen sistem, e-tekstil ve yumuşak
robotikleri başarıyla entegre ederek, tamamlayıcı bir uçtan uca çözüm olarak çalışma
kapasitesini kanıtlamıştır. Bunlara ek olarak sistem farklı eşzamanlılık ve prosesler
arası haberleşme methodları ile test edilmiştir. Sistem ek olarak, çoklu işçi cihazı ile
de test edilmiştir. Sistemin, 1 işçi cihazı ile 10, 2 işçi cihazı ile 22, 3 işçi cihazı ile 26
ve bulut sisteminde de 23 cihaza kadar hizmet verebildiği gözlemlenmiştir.

Her iki uygulamadan elde edilen sonuçlar, FogETex çerçevesinin gerçek zamanlı
çalıştığını ve sağlam bir performans sergilediğini göstermiştir. FogETex sisteminin
birincil amacı, e-tekstil uygulamalarında kullanılması olmakla birlikte, aynı zamanda
e-tekstiller tarafından üretilen sinyalleri işleyerek tekstil tabanlı yumuşak robotik
yapıları kontrol edebilmektedir. Böylece, hem e-tekstiller hem de yumuşak robotik
alanlarını kapsayan bir çerçeve olarak hizmet vermektedir. Başlangıçta elektronik
tekstil uygulamaları için geliştirilmiş olmasına rağmen, FogETex çerçevesi diğer IoT
cihazlarını da barındırabilmektedir.

xxxiii

xxxiv

1. INTRODUCTION

Textile products hold a prominent role in the routine lives of individuals. From the

onset of the day, people engage with various textile materials, and this interaction

persists until they retire to bed at night. Notably, even during their sleep, individuals

remain in contact with textiles. The advent of electronic textiles (e-textiles) has

made it possible to transform these interactions into digital data, facilitating human

motion, gaming, pressure mapping, rehabilitation, healthcare, smart wearables, and

smart garments [1]. On the other hand, textile products can be operated as actuators by

integrating controlled deformation features into the fabric. In contrast to conventional

rigid sensors and actuators, e-textile products offer the advantages of being lightweight,

soft, breathable, and comfortable [2]. Furthermore, thanks to the significant advances

in mass production through centuries of textile development, the use of textile products

is expected to rise progressively. This advancement not only increases the production

capacity of electronic textile products but also amplifies their overall positive attributes,

thereby improving their potential.

The collaboration of individuals from different engineering and science fields within

electronic textiles technology has led to the emergence of various technologies

and products in sectors such as healthcare [3], aerospace [4], entertainment [5],

agriculture [6], and education among many others. The development of health-focused

products within the field of electronic textiles enables the collection of vital health

data, including ElectroCardioGram (ECG), ElectroMyoGram (EMG), and respiratory

information. Furthermore, the integration of pneumatic artificial muscle [7] and

exoskeleton actuators [8] into electronic textile technology aims to enhance the quality

of life for patients. Sensors within the garments worn by aerospace passengers

allow for sensing capabilities, additionally providing haptic feedback to the individual

wearing the suit [9]. In the realm of entertainment, there are diverse application

examples utilizing electronic textiles technology, including game controllers [10] and

1

interactive education game mats [11]. In addition, the utilization of textile displays as

interactive interfaces improve activities such as sports, making them more enjoyable

and engaging [12]. In the field of agriculture, electronic textiles technology is used in

various applications, including monitoring chloride levels in the soil [13] and enabling

the gentle harvesting of sensitive fruits through the use of sensors [6]. In the domain

of education, there is a focus on enhancing learning experiences for preschool children

through the implementation of interactive educational methods [14].

The rapid expansion of electronic textile applications causes an increase in data and

processing load [15]. To deal with this processing load, it is essential to establish

appropriate architectural solutions. Electronic textile applications are expected to

operate in real-time, and the textile products in which sensors and actuators are

embedded often have low battery capacity due to comfort considerations. The energy

harvesting studies [16]–[18] within the domain of electronic textiles are potential

candidates for solving the battery problem in sensing electronic textile applications.

However, the amount of energy they can generate with current technology is not high

enough to power circuits, so they cannot yet offer a solution to this problem [19].

Efforts are made to prolong battery life by incorporating low-energy microcontrollers

in the electronic circuitry of textile products. However, tasks that demand high

processing power and energy, such as data processing and machine learning, should be

offloaded to dedicated computing architectures. Although traditional sensor-to-cloud

architectures are candidates for meeting needs due to their characteristics such as

scalability and high performance, they will not be suitable for electronic textile

applications due to factors such as intermittent delay, high bandwidth requirements,

and security concerns. Network issues or errors in the data center can lead to inaccurate

results, posing a risk to human safety, particularly in healthcare applications. Such

inaccuracies may potentially result in unintended injuries or adverse effects.

Fog computing systems are well-suited for electronic textile applications due to

their advantages. These systems offer real-time computation capabilities, enhanced

security measures, flexible placement options for computing units, reduced bandwidth

requirements, improved energy efficiency, support for the user or patient mobility,

and seamless integration with existing infrastructure [20]. As a result, fog computing

2

systems provide an optimal choice for addressing the unique requirements of electronic

textile applications.

1.1 Purpose of the Thesis

In the literature on resource-constrained tiny IoT devices, rigid sensor structures are

often encountered. In contrast, electronic textile devices are flexible, with a primary

focus on comfort constraints. The flexibility and comfort provided by textile structures

also introduce challenges, including sensor-circuit connection issues, low resolution,

stability issues, cycle errors, and operational range limitations. Due to comfort

considerations, the data acquisition and transmission circuits need to contain as few

components as possible, to make them small and lightweight. Due to the vastness of

these challenges, many studies focus solely on individual components, such as sensors,

and remain at the proof-of-concept stage in laboratory settings without transitioning to

practical applications [1]. Furthermore, systems developed for e-textile applications

must inherently operate effectively in both indoor and outdoor environments, possess

low latency, facilitate real-time data processing, and maintain session information

along with time-series data processing. To our knowledge, there is currently no

framework in the literature that utilizes a fog computing architecture specifically

tailored for electronic textiles.

The primary aim of this thesis is not only to develop a fog computing framework

specialized for e-textile uses but also to create applications to test this framework.

It is essential to understand their characteristics to design a system tailored to the

nature of e-textile applications. For this purpose, various systems such as gait phase

recognition system and hand motion recognition system have been developed using

electronic textiles, making this one of the most significant objectives of the thesis.

Consequently, the framework has not been developed in a theoretical vacuum. While

the various applications reinforce the framework’s foundation, it aims to unify all these

efforts under a single umbrella.

While many studies focus on a specific problem area and provide solutions, they often

fail to translate into real-world applications. In this thesis, the goal is not merely to

process sensor data; rather, it is to utilize processed data for purposes that can simplify

3

people’s lives. Textile structures are uniquely suited to soft robotics, as they can

directly interact with people and enable beneficial applications. Therefore, establishing

systems that process signals from e-textile sensors to control textile-based soft robotic

structures is also an objective of this thesis. Through this work, the goal is to realize

end-to-end systems where sensing, computing, and actuating function in unison. In

this way, as shown in Figure 1.1, focus area of the thesis is to develop human-centered

systems by integrating textile, health, electronics, and computer sciences.

Focus Area
of the Thesis

Textiles Health

Electronics &
Computer Science

E-Health

Medical
Textiles

E-Textiles

Figure 1.1 : Focus area of the thesis.

1.2 Contribution of the Thesis

In this thesis, a fog computing framework is developed specifically tailored for

electronic textile applications. This framework consists of edge, fog, and cloud layers.

The edge layer is where data is generated from e-textile products. In the fog layer,

the worker device is responsible for processing the data produced in the edge layer,

while the broker manages the devices in the fog node. The cloud layer is responsible

for overseeing the entire architecture. The framework designed can be used for both

indoor and outdoor applications. Deep learning-based applications involve a high

amount of multiply and accumulate operations and memory access [21]. Therefore,

a deep learning-based gait phase recognition application using Textile-based Internet

of Things (T-IoT) device with capacitive strain sensor data was utilized to test

the performance of the developed framework under high computational load. The

framework was tested using various experimental scenarios in terms of its time

4

performance, resource usage, and network bandwidth usage. In addition to these,

a system stress test and a performance comparison with a similar study were also

conducted.

The main contribution of this thesis to the literature is the development of a framework

specifically tailored for electronic textiles using a fog computing architecture. This

framework serves both indoor and outdoor clients in real-time with low response

times to meet the needs of e-textile applications. Additionally, the system retains

session information for processing time-series data, and data flows continuously. This

contribution is particularly relevant as it addresses the growing demand for efficient,

low-latency solutions in wearable technologies, an area where existing fog computing

frameworks often fall short in real-world, distributed environments. In contrast to

numerous fog computing frameworks, the team has developed all software components

involved in the framework, ranging from sensor acquisition to cloud infrastructure,

as well as the hardware of the T-IoT device. A typical use case, which utilizes a

deep learning-based model to process time series data generated from textile-based

sensors, has been applied within the framework to operate in real-time. One of the

most significant contributions of this thesis is the introduction of the T-IoT device

concept to the literature for the first time.

To develop a framework suitable for e-textiles, it is essential to thoroughly analyze

their characteristics. For this purpose, gait phase recognition and hand motion

recognition applications were developed using textile-based capacitive sensors. In

the gait phase recognition system, deep learning was utilized to track step phases

from single-sensor data. On the other hand, the hand motion recognition system

implemented a multi-sensor electronic textile application. Additionally, to gain a

broader perspective on e-textiles, a review paper focusing on security and privacy has

been prepared, contributing to the literature.

Strengthening the foundation of this thesis, a deep learning-based gait phase

recognition system [22], which involves high computational load, was chosen to

test the developed fog computing system. This application provided a basis for

conducting the necessary tests for e-textile applications. The test results confirmed

5

that the developed framework can serve with low latency in both indoor and outdoor

applications. Through this thesis, a fog computing system tailored to the needs of

e-textile applications has been developed. Although the system is specifically focused

on e-textiles and fog computing, it is also adaptable to other sensor and computing

architectures.

Within the scope of this thesis, a telerehabilitation application has been developed

using a sensing T-IoT glove and an actuating T-IoT glove to save time for patients and

medical staff. This application enabled the holistic testing of the developed framework,

encompassing both sensing and actuating functionalities. Implemented on the cloud to

overcome distance limitations, the application demonstrates that the framework is not

restricted to fog systems but can operate on various platforms independently, proving

its adaptability across different systems. Additionally, with this application, the system

was also tested in the fog environment using various concurrency and inter-process

communication techniques. Furthermore, the system was tested as a whole with a

multi-worker setup.

1.3 Organization of the Thesis

The thesis consists of a total of six chapters and is organized as follows: Chapter

2 provides a literature review on electronic textiles, textile-based actuators, and

cloud, edge, and fog computing. Chapter 3 presents a detailed explanation of the

FogETex framework developed for e-textile applications. In Chapter 4, the gait phase

recognition system is described. In this chapter, the gait phase recognition system

is integrated into the FogETex framework, and its suitability for indoor and outdoor

applications is tested. Chapter 5 focuses on the assistive soft robotic glove, where a

telerehabilitation application is developed using sensing and actuating T-IoT gloves.

The developed framework is employed within this application under cloud computing.

Finally, Chapter 6 concludes the thesis and presents directions for future work.

6

2. LITERATURE REVIEW

In this chapter, the literature has been reviewed under two main headings: electronic

textiles and computing systems. In Section 2.1, the focus is on the specific area of

this thesis, examining electronic textile structures, including sensors and actuators.

In Section 2.1.1, cloud computing, edge computing, and fog computing systems are

investigated.

2.1 Electronic Textiles

This thesis focuses on the sensor and actuator structures of electronic textiles. First,

attention is given to e-textile sensors, which serve as the source of data. Information is

provided on textile-based resistive, capacitive, and inductive sensors, as well as textile

electrodes. Second, the study focuses on textile-based actuators designed to manipulate

the environment or target objects to provide practical benefits. This section examines

cable-driven, fluidic, and shape-changing actuators.

2.1.1 Sensors

The evolution of conductive yarn and fabric technologies has led to the integration

of electrical current within textile products. In its initial stages, conductive fabrics

were primarily conceived to leverage textile materials as heating elements. Hence, the

primary objective was to address the issue of copper cable breakage arising from the

repeated bending, folding, and unfolding associated with electrical blanket products

available in the market [23]–[25]. Subsequently, with the advent of conductive yarn

technology, it became feasible to create small conductive pathways within textile

materials [26,27].

Over time, the evolution of conductive yarn and fabric technologies facilitated the

emergence of electronic textiles, enabling the incorporation of sensory capabilities

into textile products [28]. These advancements allowed for the detection of various

7

stimuli—such as pressure, force, stretching, optical changes, chemical attributes, as

well as monitoring temperature and humidity in the external environment—within

textile products. Electronic textiles serve as an efficacious means to imbue fabrics

with the capability to perceive diverse physical stimuli and responses [29]. Certainly,

instances of electronic textile applications manifest across various domains, including

commercial spheres [30], medical applications [31,32], military contexts [33], and

aerospace industries [34]. The scholarly literature continually expands with the

addition of novel electronic textile applications on a daily basis. Electronic textiles

are categorized into resistive sensors, capacitive sensors, inductive sensors, and textile

electrodes based on their electrical reactions to various physical stimuli. This section

will analyze the various types of e-textile sensors and their respective applications

across different usage domains.

2.1.1.1 Textile based resistive sensors

Textile-based resistive sensors are characterized by alterations in their resistance values

in response to environmental stimuli, encompassing factors like force, temperature

variations, magnetic fields, chemical influences, and optical changes. The alteration

in resistance can be quantified through suitable electronic circuits and subsequently

utilized as data in diverse applications.

Resistive sensors are categorized into various types based on their physical responses,

including piezoresistive sensors, which react to pressure; thermoresistive sensors,

sensitive to temperature changes; magnetoresistive sensors, affected by magnetic

fields; chemiresistive sensors, responsive to chemical stimuli; and photoresistive

sensors, influenced by optical variations [35]. This part concentrates on piezoresistive

and thermoresistive sensors, commonly applied in human activity recognition

methodologies.

Piezoresistive sensors: They exhibit alterations in resistance due to pressure or

mechanical stretching exerted upon them. Pressure sensors find application in various

fields such as touch and grip detection [36,37], posture detection [38], and analysis

of plantar pressure distribution [39]. These sensors identify and measure applied

pressure within these contexts. Motion capture systems utilize textile-based sensors

8

to determine joint angles, such as those of fingers [40], knees, elbows [41], and

shoulders [42], by measuring the stretching or elongation of the sensors. Indeed,

through sensor stretching, it is feasible to acquire vital signals such as respiration

rate. An example study demonstrates a textile-based resistive strain sensor used

for assessing respiratory rate. This sensor facilitates the monitoring of diaphragm

expansion, enabling the determination of the respiration rate. The tension applied

to the stitches formed with conductive yarn in this sensor causes a reduction in the

contact points of these stitches, consequently leading to an increase in the resistance

value of the sensor [43]. Simple electrical measurement methods suffice for the

evaluation of piezoresistive textile sensors. Notwithstanding the straightforwardness of

the measurement technique, these sensors exhibit characteristics such as high response

times, low linearity, and considerable hysteresis [44].

Thermoresistive sensors: They are commonly applied for the measurement of human

body temperature [45]. In the medical domain, body temperature stands as one of

the essential vital signs among the four primary indicators. Heart rate, respiration

rate, and blood pressure are the other vital signals. Changes in temperature directly

induce variations in the resistance values of these sensors. Thus, by incorporating

a measurement circuit into the textile sensor, real-time monitoring of the body

temperature of the individual can be achieved, facilitating prompt notifications to

individuals or healthcare institutions during critical scenarios [46].

2.1.1.2 Textile based capacitive sensors

Capacitive sensors are formed through the insertion of dielectric materials, such as

silicone [47], foam [48], and thermoplastic polyurethane [49], between two conductive

fabrics. This configuration operates as a parallel plate electrode. The capacitance of

the sensor diminishes as a consequence of either the elongation of the sensor length or

the reduction in the distance separating the conductive fabrics. Textile-based capacitive

sensors demonstrate distinct characteristics, including low linearity, reduced response

time, and heightened hysteresis, distinguishing them from resistive sensors. In contrast

to resistive sensors, textile-based capacitive sensors exhibit characteristics marked by

low linearity, decreased response time, and reduced hysteresis [50].

9

Another capacitive sensor production technique involves employing the interdigital

sensor technique. In this method, the capacitive sensor electrodes are designed

not to overlap but rather in a comb-like structure, allowing them to be designed

to interlock with each other. Hence, the change in capacitance is observed as the

distance between the “teeth” of the comb structure decreases or increases based on

the stretching direction of the sensor. Through this manufacturing technique, the

sensor can be produced as a single-layer and thinner structure. Actually, this sensor

technique is commonly encountered in products utilizing MicroElectroMechanical

Systems (MEMS) technology [51]. Atalay [52] utilized conductive fabric from

textiles to form the electrodes and placed silicone material between these electrodes

to produce a capacitive interdigital sensor. Martinez-Estrada et al. [53] produced an

interdigital sensor using weaving techniques with conductive and cotton threads. In

another study, Yilmaz et al. [54] produced an interdigital capacitive sensor solely using

knitting techniques, incorporating stretchable conductive yarn and regular yarn. As a

result, they were able to create a more flexible sensor in a single piece compared to

others, enabling the production of a single-piece, more flexible sensor unit.

As an alternative technique, capacitive sensors can be exclusively fabricated through

yarn technology. The inner composition of the yarn comprises conductive silver fibers,

while the outer layer consists of a dielectric material like cotton, enabling the creation

of capacitance between two or more yarns. As this sensor extends, the centers of the

yarns draw nearer, subsequently resulting in an increase in the capacitance value of the

sensor [55].

Textile-based capacitive strain sensors find application in gloves designed for finger

movement tracking [47], human body motion tracking systems [44,56], as well as in

monitoring respiration rates. By employing machine learning techniques to process

the data from these sensors, it becomes feasible to develop activity recognition

systems [57]. An example study on step length estimation for indoor navigation

purposes develops machine learning models to estimate step-by-step movements

using textile-based capacitive strain sensors combined with Inertial Measurement Unit

(IMU) sensors [58].

10

Textile-based capacitive pressure sensors enable the detection of touch and force

properties, thereby catering to applications within the realm of soft robotics [2].

Sensor arrays can be established by arranging multiple capacitive pressure sensors

in a contiguous fashion, facilitating a collective sensing capability. Consequently,

such sensor arrays find utility in the advancement of applications like foot pressure

mapping [59], position detection [60], gesture recognition [61], fall detection [62], and

education game [11].

2.1.1.3 Textile based inductive sensors

Compared to other textile sensor technologies, textile-based inductive sensors

represent a more recent technological development. Inductance is established by

configuring nested loops in various patterns, including round [63], rectangular [64],

and T-shaped [65], utilizing conductive yarn. The inductance produced by the sensor

rises correspondingly with an increase in the number of loops incorporated within

its design. Instances of applications exist in the literature, including heart rate

monitoring [63] and motion tracking [64,65] utilizing textile-based inductive sensors.

An example study demonstrates a textile-based inductive sensor, where loops are

configured in a rectangular shape to generate inductance. The sensors positioned

around the hip joint area capture the multi-axial angle changes. The process of

determining angle values involved employing the random forest regression algorithm

subsequent to various data preprocessing stages, including sliding window techniques

and feature generation [64].

2.1.1.4 Textile electrodes

Unlike other e-textile sensors that generate electrical responses like resistance,

capacitance, or inductance, textile electrodes establish a strong electrical contact point

between the human body and measurement modules. Hence, wearing a t-shirt or

a textile band embedded with textile electrodes facilitates the reception of diverse

body signals—such as ECG [66]–[68], EMG [69,70], and EEG [71,72]—eliminating

the need for uncomfortable medical electrodes. Due to the very low voltages and

high noise inherent in these signals, the employed conductive fabrics and conductive

11

yarns are anticipated to possess high electrical conductivity. By integrating wireless

capabilities into these products, it becomes feasible to develop applications capable of

uninterrupted signal data collection from the heart and muscles of patients, transmitting

this information directly to emergency health services [73].

An example study presents an ECG monitoring system employing textile electrodes.

This system facilitates the instantaneous transmission of the ECG signal to a mobile

device through Bluetooth technology. Employing the beat detection algorithm enables

the instantaneous extraction of an individual’s heart rate information. This data can

subsequently be integrated into motion capture systems to create applications like

anomaly detection and calorie calculation [73].

2.1.2 Actuators

Actuators are devices that convert the energy provided to them into mechanical energy,

such as displacement, rotation, force, or motion. Linear electric motors and hydraulic

or pneumatic pistons are examples of actuators commonly found in the industry.

However, these products are large, rigid, heavy, noisy, and inflexible structures. While

they offer solutions to many problems in the machine industry, they are particularly

unsuitable for fragile and delicate applications. Especially in applications involving

interaction with humans, there is a need for soft, compliant, lightweight, and silent

actuators. Textile-based soft actuators meet this demand. When these actuators come

together to form systems, they are referred to as soft robotics [74].

Textile-based soft robotic structures have a wide range of applications. These

include locomotion assistance, thermoregulation, grasping and reaching assistance,

shape-changing for dressing, haptic [75] and communication, as well as therapeutic

compression. Due to the comfort, lightweight, and adaptability features provided

by soft robotic structures in these applications, it is an open domain for new

applications and use cases. Textile-based actuator structures can be categorized based

on their working mechanisms into cable-driven actuators, fluidic textile actuators, and

shape-changing actuators [76].

12

2.1.2.1 Cable driven textile actuators

Cable-driven actuator systems apply force to a textile product by pulling a flexible

cable through an external mechanical actuator system. During the development of

these systems, cables are fastened to garments using an anchor point [77]. An engine

placed on the other end pulls this cable, applying force to the designated point. In

these types of actuators, cables made of steel [78], aramid-containing polymers [79],

polyethylene [80], and woven belts [81] can be utilized.

Integrated systems within clothing assist individuals in performing challenging muscle

movements. Hence, individuals are enabled to perform various joint movements such

as walking [82], reaching [83], and grasping [84]. Developed robotic systems can be

used to apply rehabilitation therapy to patients. Moreover, haptic feedback systems

are developed for virtual world applications to make simulations more realistic. An

example study involves a virtual reality application developed for drone simulation,

providing haptic feedback to the user [85].

2.1.2.2 Fluidic textile actuators

Fluidic textile actuators differ from cable-driven actuators as they undergo shape

changes by expanding with gas, air, or liquid supplied into them, depending on the

application. This expansion behavior generates pushing force in the desired area.

For these types of actuator systems to function, external systems such as tanks,

compressors, and pumps capable of supplying air, gas, or liquid, as well as pipelines for

conveying these fluids, are required. Apart from that, an additional layer is integrated

into textile products to prevent liquid or gas leakage, forming an artificial muscle.

These structures are preferred due to their characteristics such as simplicity, attaining

high power, good energy efficiency, and functionality [86].

Fluidic textile actuators are primarily represented by the McKibben/Pneumatic

Artificial Muscle (PAM) within the linear actuator group. PAM actuators are designed

to assist human movement. In these types of actuators, expansion occurs sideways

with air pressure, causing contraction in length. Thus, it generates tensile force [86].

13

PAM actuators can be used in various applications such as locomotion assistance [87]

and upper body joint motion [88].

Another group of fluidic textile actuators is Programming Fluidic Textile Actuators. In

these types of actuators, fabric structures are designed to rotate in a specific direction.

Thus, complex movements such as bending [89], rotational [90], and lifting [91] can be

achieved. Flexible and non-flexible fabric structures are combined in these actuators

to create anisotropy. Anisotropy can be achieved through methods such as combining

woven and knitted fabrics [92,93], using knitted fabrics with varying flexibilities [94],

adding seams to a uniform knitted fabric [95], employing pleated fabric structures‘

[96], and utilizing 3D knitting techniques‘ [97]. Additionally, creating pockets in

an accordion shape can also generate pushing force when assembled together [98].

Actuators of this kind can be used in various applications such as grasping [99], skin

locomotion [100], locomotion assistance [98], and joint movement [101]. An example

study features an exoskeleton glove developed using bending actuators created with

the 3D knitting technique. Air bladders are placed between the layers of three-layered

knitted actuators, which are composed of a stretchable upper layer and non-stretchable

middle and bottom layers. When the air bladder between the upper and middle layers

is inflated, the resulting anisotropy causes the actuator to bend. Similarly, when the

air bladder between the bottom and middle layers is inflated, the actuator performs an

extension movement due to the non-stretchable structure of these layers. By placing

five actuators onto a glove, an exoskeleton glove was constructed [8].

2.1.2.3 Shape-changing actuators

Shape-changing actuators incorporate active yarn technology, enabling them to be

designed into various shapes by utilizing changes in the length of the yarn with external

heat or electrical energy. Within these types of actuators, there are various technologies

present; Shape Memory Alloys (SMAs) [102] and Shape Memory Polymers

(SMPs) [103] undergo changes in length due to their distinct crystal structures

at different temperatures. Carbon NanoTube (CNT) [104]–[106] and Dielectric

Elastomer Actuators (DEA) [107] operate by receiving electrical energy to perform the

desired movements. Apart from those, some actuators operate by mass transfer due

14

to other environmental factors such as moisture-driven [108] and hygroscopic [109]

actuators. In the literature, there are several applications of shape-changing textile

actuators such as thermoregulation [110], haptic feedback [111], bending [112],

locomotion [113], and lifting [114]. An example study demonstrates the

thermoregulation application of shape-changing actuators, where ventilation flaps open

to decrease the body temperature in response to perspiration [115].

2.2 Applications

In this section, a literature review has been conducted on the gait phase recognition and

assistive soft robotic glove control studies, which were developed to test the FogETex

framework.

2.2.1 Gait phase recognition system

Different aspects of the gait cycle can be determined by measuring the motion or

tracking the location of the foot by utilizing various sensors including cameras,

non-wearable devices such as sensor floors [116], wearable devices and their

combinations [117]. In the camera-based approach, the joint angles or limb positions

are extracted from each frame of the captured video, or features of the frame are learned

by utilizing various machine learning methods [118,119]. Even though vision-based

and non-wearable devices provide accurate results in gait phase detection, most of

them are only available in specialized laboratory setups [120].

Wearable devices can be divided into two different groups which are force

measurement sensors or angular velocity and accelerometer measurement sensors.

Force measurement sensors [121] are generally in the shape of an insole, and require

the shoe to be worn constantly which is not always applicable to individuals with

walking abnormalities [120]. Another commonly used sensor in this field is the

[122,123], which performs poorly when the individual paces at a lower speed. Thus,

the IMUs are usually combined with other sensors to increase the reliability of the

system [124]. Flexible strain sensors are also utilized in gait and posture classification

[120], and the main idea is the change in the electrical resistance or capacitance value

in accordance with the elongation of the sensor [125].

15

For gait segmentation, numerous traditional machine learning and deep learning

approaches have been investigated in order to assist the decision-making in clinical

studies and develop a control system [126]–[128]. Some examples of the widely

utilized models in the gait segmentation can be given as Random Forest [129],

Support Vector Machine [130], k-Nearest Neighbour [129], Neural Networks [131].

Overcoming the issue of the high dimensionality and variability nature of the data and

increasing the reliability of signal segmentation can be defined as advantages of DL

over traditional ML techniques [128].

2.2.2 Assistive soft robotic control

The human hand plays a crucial role in our everyday activities, serving as a

sophisticated and intricate tool that allows us to accomplish tasks accurately and

effectively [132]. Physical and neurological conditions such as stroke, burns, fractures,

and ligament injuries can diminish finger range of motion and grip strength, while also

increasing joint stiffness, significantly impacting individuals’ physical, psychological,

and economic welfare, and substantially impeding their capacity to carry out activities

of daily living [133,134]. Hand dysfunctions necessitate exercises assisted by

medical staff to restore functionality, and success in musculoskeletal rehabilitation

relies on numerous factors, including the timing, intensity, and frequency of the

exercises [135]–[137].

Many patients face obstacles that prevent them from accessing rehabilitation programs,

such as financial constraints or difficulties in reaching therapy centers due to

distance. Additionally, a lack of medical staffs restricts individuals from receiving

the required rehabilitation for their physical enhancement [138,139]. Particularly

during pandemics, medical staff-dependent rehabilitation methods become especially

vital [140]. To overcome such hindrances, remote rehabilitation approaches have

been developed within diverse IoT scenarios, involving the real-time collection

and processing of data through sensors [141,142]. This makes remotely guided

training more accessible, affordable, and results-driven [143] thereby influencing the

motivation of patients in therapy sessions [144].

16

Hand exoskeleton robots, which mimic human hand movements and aid in

rehabilitation by performing tasks such as grasp-release exercises, are increasingly

utilized in medical environments. Robots often controlled remotely through assistive

robotic gloves, are also commonly employed in virtual reality applications [145,146].

Clinical research has demonstrated that stroke patients who participate in intensive

repetitive movements through robotic hand therapy experience notable enhancements

in hand motor functions. Furthermore, their central nervous system adeptly

incorporates feedback from multiple senses to aid in motor learning when confronted

with hand movements induced from various sources [147,148].

Studies concerning hand functionality can be categorized into two main areas: gesture

recognition and motion control [149]. Signals stemming from various sources have

been investigated for the control of robotic hands, including activating buttons [150],

physiological signals like EEG [151] and EMG [152,153], voice commands [154],

eye tracking [155], and even movements of the feet [156]. For instance, vision-based

hand tracking utilizes cameras to monitor hand movements by employing machine

learning techniques trained on extensive image datasets [157,158]. Another approach

involves wearable hand tracking based on Inertial Measurement Units (IMUs) and

compasses. This method typically involves attaching accelerometers, gyroscopes, and

magnetometers to the hand to measure its orientation, and then reconstructing the hand

configuration by collecting angle data from each finger [159].

The earlier developed sensor designs feature components that are difficult to utilize,

intricate to manufacture, and susceptible to fragility [160]. In vision-based systems, a

fundamental challenge arises when objects fall outside the camera’s Field Of View

(FOV), which remains unaddressed even with the application of machine-learning

techniques [161]. For IMU and compass-based systems, their vulnerability to

magnetic field interference makes them impractical to use in close proximity to

ferromagnetic objects [159,162]. Given these considerations, flexible, lightweight,

and stretchable sensing technologies present a compelling solution as they provide

excellent adaptability and can precisely capture the signals produced by fingers,

facilitating safe interactions [93,163,164]. Unlike rigid glove systems that may limit

17

finger movement, soft gloves offer flexibility, allowing users with different finger sizes

to maintain natural motion without any constraints [165].

Assistive robotic glove systems have the capability to discern intricate hand

features, gather low-dimensional data, and achieve faster hand gesture recognition

speeds [166,167]. Currently, rigid and soft robotic gloves have been designed to

address the need for increased repetitions, utilizing various actuating systems such

as pneumatic, hydraulic, electric, and tendon-driven systems to provide mechanical

power [168]. Advanced robotic systems feature complex mechanisms that can produce

the required forces and movements with precision for hand therapy. Yet, their

intricate mechanical design, heaviness, and bulkiness present notable obstacles when

developing hand exoskeletons [169]. Soft robots’ physical flexibility presents an

encouraging answer to the limitations faced by traditional robots in terms of safety

and adaptability [170]–[172]. Assistive devices, utilizing soft materials such as

textiles [8,93] or elastomers [173], are inherently designed to be safe, lightweight,

compliant, and non-restrictive, facilitating prolonged wear [154,174,175].

2.3 Computing Systems

Sensors based on textiles can be manufactured for various applications. These sensors

require a framework for collecting, processing, and transmitting their data to end users.

However, as user and sensor count in the system grows, it leads to increased data

flow and computational load. In this section, various computing systems aimed at

addressing these issues are explored.

2.3.1 Cloud computing

Cloud computing emerged due to the widespread accessibility of the Internet,

advancements in virtualization technologies, continuous information flow, and the

resulting accumulation and processing demands of big data. The first examples of

cloud computing date back to the 1960s. Through the concept of “time-sharing,”

terminal computers are connected to mainframes, enabling multiple users to access

computing services from a centralized system [176]. In the 1990s, with the

public availability of the Internet and the rapid expansion of the World Wide

18

Web, significant advancements in data storage and application accessibility occurred,

laying the foundation for cloud computing infrastructure [177]. The development of

virtualization technologies, such as VMWare, Linux Kernel-based Virtual Machine

(KVM), and Xen, in the early 2000s, further optimized physical resources for user

utilization. The ability to customize and share a single resource among multiple users

allowed cloud computing technology to expand [178].

The establishment of Amazon Web Services (AWS) in 2006 marked a milestone for

cloud computing. With AWS, users gained increased access to scalable infrastructure

tailored to their needs [179]. Today, cloud computing serves as a critical infrastructure

tool in artificial intelligence and big data applications. Its high data processing

capacity offers innovative solutions across industries and supports a wide range

of applications [180] Key application areas for cloud computing include Software

as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service

(IaaS), data backup and storage, big data analytics, machine learning and artificial

intelligence, IoT (Internet of Things), telerehabilitation and healthcare services, media

and entertainment, education, as well as finance and banking.

Today, cloud computing enables individuals and organizations to use their

technological infrastructure more flexibly and efficiently. Cloud computing consists

of three main service models: SaaS, PaaS, and IaaS. SaaS provides users with

remote access to software applications. Typically subscription-based, this system

allows users to access software over the Internet. Examples of such software

include email, calendars, and office tools [177]. PaaS simplifies the development,

testing, and deployment processes of applications for developers, without the need

for publishing them first [181]. IaaS, on the other hand, is primarily used by system

engineers or network architects and includes virtual machine storage solutions. With

IaaS, companies can reduce hardware and setup costs [178,180]. These service

models offer scalability, flexibility, and cost-efficiency while addressing diverse user

needs [182,183].

Cloud computing provides users with reliable, scalable, and cost-effective solutions for

data storage and backup. Compared to traditional methods, cloud-based systems offer

19

geographically independent access to data from any location while enhancing security

to minimize data loss [184]. In cloud-based storage systems, data is replicated across

multiple servers, ensuring protection against physical hardware failures, software

malfunctions, or natural disasters [185]. Service providers such as Amazon S3, Google

Cloud Storage, Dropbox, OneDrive, and Yandex Disk offer flexible solutions that

enable users to store large amounts of data. Furthermore, security measures like

data encryption and access management safeguard data privacy [186]. These features

are especially beneficial in sectors like finance, healthcare, and education, where

data privacy is a high priority [187]. With the automatic backup feature provided

by cloud computing, companies benefit from regular data backups, replacing the

manual operations traditionally performed by Information Technology (IT) teams.

This reduces operational burdens and secures company data more effectively [188].

Cloud storage enables quick and easy data access while maintaining data integrity

and minimizing data loss through reliable backup procedures [189]. Consequently,

cloud computing technology offers both individual users and organizations secure and

economically efficient solutions for data management [190].

In modern technology, artificial intelligence, machine learning, and big data

analytics serve as foundational components and are increasingly integrated into every

technological domain. Alongside this integration, the demand for computational power

continues to grow. Big data analytics enables valuable insights by analyzing large

and diverse datasets. Through machine learning, these insights can be transformed

into meaningful predictions [191]. Machine learning systems possess the ability to

learn from data, allowing for the development of predictive models. Cloud computing

systems are responsible for training these models and adapting them as new data

becomes available [192]. Artificial Intelligence (AI), in contrast, encompasses a

broader concept that includes not only machine learning but also algorithms and

systems designed to perform tasks in a manner similar to human capabilities [193].

Together, these three technologies are driving transformative changes across industries,

including healthcare [194], finance [195], automotive [196], and e-commerce [197].

For instance, big data analytics and machine learning enable early diagnosis from

patient data [198,199], while AI systems facilitate the development of autonomous

20

vehicles [200]. Additionally, cloud computing enables large language models to be

deployed and serve millions of users simultaneously [201].

Beyond these applications, cloud computing supports a wide range of other fields. In

the realm of IoT, cloud computing plays a crucial role in data processing, data flow, and

storage [202]. In telerehabilitation and healthcare, it facilitates interactions between

patients and medical staff, enabling applications in patient monitoring, treatment, and

diagnostics [203,204]. Another significant area for cloud computing is media [205]

and social media [206]. While cloud computing helps disseminate information

to millions through media channels, social media platforms transform individuals

from mere recipients to active sources of content. Social media enables real-time

interactions among billions, with cloud computing systems serving as the backbone

of this massive connectivity [207]. In the entertainment industry, cloud systems

provide the infrastructure for various areas, including gaming [208], movies [209],

and music [210]. In education, cloud computing supports the storage and sharing of

educational materials and the operation of online testing systems [211]. Following

the COVID-19 pandemic, existing educational systems have leveraged cloud solutions

to enable students to continue their lessons online [212]. In finance and banking,

users can perform banking services anytime from anywhere without visiting branches.

Cloud systems not only provide the infrastructure for these transactions but also

implement solutions to ensure their security [213].

Cloud computing technology presents several advantages, including cost-effectiveness,

reduced energy consumption, enhanced resource management efficiency, and

industry-specific solutions. However, challenges such as security and privacy

concerns, service migration, and service continuity also persist within cloud

computing [214]. Notably, due to the centralized nature of servers and the distances

between users and these servers, latency issues arise, creating the need for additional

computational systems to support real-time applications.

2.3.2 Edge computing

Edge computing differs from traditional cloud computing by advocating for

computations to occur on edge devices rather than in a centralized manner. While cloud

21

computing involves transmitting raw data to servers for processing, edge computing

processes raw data on local edge devices, transmitting only the processed data to

the server. This approach reduces the computational load on the cloud, leading

to smaller cloud systems and decreased costs [215]. With processing taking place

closer to the data source, response times decrease significantly. Furthermore, by

prioritizing calculations on nearby edge devices rather than power-intensive devices,

energy consumption is minimized within latency constraints [216].

With the proliferation of IoT devices, edge computing has gained traction as a

significant topic. Security cameras are omnipresent in streets, squares, homes,

schools, and various other locations. The instantaneous transfer of a single camera’s

video stream to a cloud system poses challenges, especially when considering the

simultaneous transfer and processing of video streams from thousands of devices.

Edge computing has emerged as a solution, facilitating real-time video analysis for

applications like traffic monitoring [217,218], autonomous drones [219], and public

safety measures [220].

Edge computing technology enables the control of factory production lines

using sensor data, including parameters like temperature, pressure, sound, and

Radio-Frequency IDentification (RFID), among others. Based on this sensor data,

actuators within the production line are regulated, enabling the detection and removal

of defective products from the production cycle. Additionally, through smart meter

systems, real-time measurements of energy consumption, production count, and other

pertinent information within the production line can be instantly tracked [221,222].

Besides, edge computing finds extensive applications in the healthcare sec-

tor [223]–[225]. Utilizing body sensor networks, data regarding body temperature,

blood glucose levels, blood oxygen saturation, blood pressure, and post-operative

monitoring can be gathered and processed on edge servers, transmitting this vital

information to hospitals. This allows for remote patient monitoring, enabling

healthcare professionals to conduct assessments even while patients are at home [226].

In addition to these application areas, beyond those application areas, edge computing

plays a pivotal role in shaping smart cities through various applications such as

22

short-term energy consumption estimation [227], vehicular networks [228], and traffic

optimization [228]. Additionally, the literature highlights its significance in domains

like smart homes [215,229], as well as collaborative edge computing [230,231].

2.3.3 Fog computing

Fog computing is an architecture that suggests processing data generated by IoT

devices in a decentralized manner on local devices, as opposed to processing it in

centralized cloud systems. It is a paradigm characterized by low latency, location

awareness, mobility, a large number of nodes, heterogeneity, real-time response, and

geographic distribution [232]. With these distinctive features, it distinguishes itself

from other computing methods and has been the subject of extensive research. Some of

the prominent areas of research include the domains of smart cities, connected vehicles,

smart grids, smart homes, healthcare management, wearables, and e-textiles.

2.3.3.1 Fog computing in smart cities

In the context of smart cities, Minh et al. [233] have developed the FogFly prototype,

based on fog computing, for adaptive traffic signal control systems, which are a method

for addressing traffic jams. The FogFly application utilizes the network topology of

iFogSim. It has been observed that the developed prototype outperforms traditional

cloud-based methods in terms of latency, energy consumption, and operational costs.

In another study, Tang et al. [234] proposed the idea of processing data at the location

of its generation, as opposed to centralized computing systems that introduce latency.

They addressed the real-time phase timing of single interaction problems using a

genetic optimization algorithm. Additionally, they employed a cloud-based system

for regional optimization.

Regarding resource management in the Traffic Light System (TLS), Jang et

al. [235] proposed a Software-Defined Network (SDN) structure for dynamic resource

allocation. This approach was motivated by the increasing vehicle traffic and the

corresponding surge in traffic report messages. The proposed SDN system allows

for the dynamic allocation of resources, especially during rush hours when resource

demands increase and available bandwidth decreases. To reduce both network

23

bandwidth usage and response times, they employed a fog-based architecture, while

computation-intensive processes were offloaded to the cloud.

In a different study, Serdaroglu et al. [236] have proposed a location-aware air

quality monitoring system for smart cities. Their system can serve up to 960 clients

using 120 air quality stations. In addition, Aliyu et al. [237] have developed a fog

computing-based shopping recommendation system to enhance customer shopping

experiences. Customers connected to the Wi-Fi network in a shopping mall receive

personalized recommendations based on their preferences. Price, congestion, and

shopping rankings are optimized accordingly. Finally, Talaat et al. [238] propose a

fog computing-based fire detection system using the YOLO-v8 algorithm. With this

method, it is expected to increase fire detection accuracy, reduce false alarms, and

lower costs

2.3.3.2 Fog computing in connected vehicles

Connected Vehicles (CV) aim to reduce traffic congestion and maximize driver safety.

Sodhro et al. [239] have developed an AI-based secure and interference-free mobility

management algorithm for driver safety and traffic monitoring. They also provided

a security and delay-tolerant wireless channel model that enhances the quality of

service for passengers. Additionally, they proposed an architecture for reliable

and efficient multi-layer fog-based vehicle-to-vehicle communication. Finally, they

optimize Quality of Service (QoS) for concepts like mobility, reliability, and packet

loss. Zhang et al. [240] have introduced a vehicular network architecture based on

software-defined and fog computing to meet the requirements of low latency and

high reliability. They have developed solutions that address resource allocation and

handover management problems, leading to improvements in these areas.

IoT technology is emerging as the future technology for various application domains,

with smart cities being one of its prominent applications. Ning et al. [241] proposes

a three-tier vehicular fog computing architecture to minimize latency in collecting

event information in the city and transmitting it to vehicles. They have developed

24

a Vehicular Fog Computing enabled (VFC-enabled) offloading scheme for real-time

traffic management. In this scheme, both moving and parked vehicles act as fog nodes.

2.3.3.3 Fog computing in smart grid

Due to the limited energy resources on Earth, it is crucial to use energy efficiently.

To enhance energy efficiency and effectively track and improve the entire journey of

energy from production to transmission and consumption, smart grid systems are being

developed. Wang et al. [242] have proposed a fog computing-based dynamic billing

system for smart grids to enable real-time pricing of electricity bills. Their focus was

on the security and privacy aspects of fog-based systems, and they have introduced a

privacy-preserving data aggregation model.

In smart grids, storing excess electrical energy is a challenging task, and surplus energy

often goes unused or is lost. Jaiswal et al. [243] have proposed a fog-based system for

energy usage prediction in smart grids. In smart grids, the data from smart meters

can create bottlenecks in cloud devices due to an increase in the number of sensors,

leading to high latency issues. Their suggested system aims to address both latency

and the balance between electricity production and consumption, providing a solution

to these challenges.

In addition, Forcan and Maksimović [244] proposed a hybrid communication

architecture based on cloud-fog computing for voltage profile monitoring and power

loss estimation. They prepared and tested their proposed system through simulations

using MATLAB Simulink, and it was found that the fog computing-based system

significantly reduced the total simulation time.

Finally, Li et al. [245] proposed a dynamic game model for resource allocation in

ubiquitous smart grids with finite electrical fog computing devices. This approach

aimed to improve resource utilization, optimize resource allocation, and reduce system

overheads in order to achieve efficient resource management for fog computing devices

in smart grids.

25

2.3.3.4 Fog computing in smart homes

Due to advancements in the Internet of Things, sensors, and communication

technologies, our homes have become smarter. Silva et al. [246] proposed a solution

for addressing availability issues caused by the susceptibility to errors in gas leakage

and temperature sensors used in smart homes. They introduced a Continuous-Time

Markov Chain (CTMC) model in the fog layer to mitigate this problem. Additionally,

they aimed to increase availability by combining the CTMC model with sensitivity

analysis. Through their modeling efforts, they achieved a high availability rate.

In a different study, Bhatia [247] developed a fog-based framework for monitoring

the health of pets in smart homes. The system monitors animals in real-time through

sensors such as EMG, ECG, and PhotoPlethysmoGram (PPG), and it can send alerts

to caregivers or veterinarians in case of emergencies. They use a deep learning-based

temporal-Artificial Neural Network (t-ANN) method to determine the condition and

emergencies of animals. Additionally, they have developed a visualization system for

pet owners to access their pets’ health information on demand.

Furthermore, Gill et al. [248] proposed a resource management method based on

particle swarm optimization to improve resource management in fog-enabled cloud

systems in smart homes. With their developed resource allocation method, they

achieved improvements ranging from 10% to 14% in parameters such as network

bandwidth, response time, latency, and energy consumption.

2.3.3.5 Fog computing in healthcare

In the field of healthcare management, Hassen et al. [249] have developed an e-health

system based on the IoT and fog computing to address the increasing health issues

associated with the growing elderly population worldwide. The developed system

utilizes fog computing to collect physiological and general health parameters from

elderly individuals at specified intervals. Through the developed Android application,

both elderly individuals and their families can monitor the health status of the relevant

individuals and communicate with healthcare providers such as system administrators

26

and doctors. The system is also capable of sending recommendations, notifications,

and alerts when necessary.

Furthermore, Kamruzzaman et al. [250] have proposed a fuzzy logic-supported

machine learning framework based on fog computing for healthcare systems. In

this system, machine learning methods are used to analyze ECG data of patients in

real-time and predict whether they exhibit symptoms of illness. The fuzzy logic system

is employed to determine the capacity of the fog computing system and ensure the

efficient utilization of resources. This results in reduced costs, energy consumption,

and latency, while improving maintenance efficiency.

Besides, Arunkumar et al. [251] have proposed a fog computing framework that

incorporates optimization and ensemble learning for the detection of heart disorders.

In this system, patient data is preprocessed, and features are extracted. Using Galactic

Swarm optimization, the features are optimized to reduce errors and increase accuracy.

Finally, various machine learning algorithms such as bagging, boosting, XGBoost,

Multi-Layer Perceptron, and Partitions are used for classification. The majority voting

classifier method is employed to combine the results of multiple machine learning

techniques, ensuring the best possible predictions. Healthcare systems inherently

require a more secure and privacy-preserving environment.

Almas et al. [252] propose a context-based adaptive trust solution for time-critical

healthcare systems that incorporate fog computing, utilizing Bayesian and similarity

measures. This proposed solution has been simulated using various applications. Due

to its linear complexity (O(n)), the recommended solution operates more efficiently

compared to other solutions.

2.3.3.6 Fog computing in non-textile wearables

Medical wearables collect vital signs from individuals. In this context, Beri et al. [253]

have developed a device containing temperature, blood pressure, ECG, and pulse

oximeter sensors to monitor the health status of pregnant women. They have proposed

a fog computing-based e-healthcare system to process the data and detect emergency

health conditions in pregnant women. Real-time tests were conducted on 80 pregnant

27

women using the developed device, and it was determined that it achieved a 98.75%

success rate in predictions. In another study, Klonoff [254] recommended the use

of fog computing-based systems for diabetes management due to the need for fast

responses to sensor data and the inherent intolerance for delays in such systems. They

discussed the use of wireless devices such as blood glucose monitors, insulin pens,

insulin pumps, and closed-loop control systems in these fog computing-based systems

to address the delays caused by cloud computing.

Besides, Monteiro et al. [255] developed a tele-treatment system for monitoring

the exercises of Parkinson’s patients. In this system, sounds produced by patients

during exercise are collected via a smartwatch, and clinical features such as loudness,

short-time energy, zero crossing rate, and spectral centroid are extracted on a fog

computing device. These features are then transmitted to the clinician via the cloud.

To reduce cloud data traffic, high-dimensional audio files recorded for analysis are

processed on the fog interface. This system enables the remote tracking of patients’

exercises, independent of location. Similarly, Paul et al. [256] proposed a fog-based

health monitoring system that utilizes wearable technology products like smart glasses,

smartwatches, and fitness bands. Data collected from these wearables are processed at

the fog layer, while cloud devices store the data. When a situation requiring action is

detected based on predictions, the decision is made and managed on the cloud. The

proposed system was simulated using the iFogSim simulator.

In addition to other works, Neel Mani et al. [257] suggested a system for processing

and visualizing data on sleep patterns, muscle effort, heart rate, respiration rate, fitness

activity, and time tracking from smartwatches through fog computing devices. The

system enables users to monitor their activities in real-time and review historical

data to stay fit. Additionally, they proposed a five-layer architecture comprising data

center/cloud, network, edge domain, smart sensors, and smart monitoring. In another

work, Moghadas et al. [258] introduced a fog-based patient monitoring system for

arrhythmia detection by processing data from medical electrodes and ECG sensor

modules connected to patients via Raspberry Pi. In this system, the ECG sensor

module is wired to the electrodes, and the data is collected by Arduino UNO, and

transmitted via Bluetooth to the fog computing device. This device detects whether

28

the patient is having a heart attack, and in case of emergency, notifies the patient or

physician.

Moreover, Kharel et al. [259] developed a fog-based smart health monitoring system

using a pulse oximeter. The system continuously transmits pulse data to a fog server

using LoRaWAN communication technology. The fog server stores the incoming

data, processes it, and displays the results. Real-time data processing is done on

the cloud as the fog server transmits the data instantaneously. Besides, Ijaz et

al. [260] proposed a smart healthcare system utilizing wearable biosensors, comprising

wearable, intelligent fog, and cloud layers. In the wearable layer, data collected

from biosensors is transferred to a Personal Data Assistant (PDA), which detects and

eliminates faulty data. In the intelligent fog layer, hidden Markov models are used to

assess patients’ health, and an alert is sent to family members or medical units when

necessary. The cloud layer is used for storing processed data. As a case study, they

monitored quarantined patients remotely during the COVID-19 pandemic.

Furthermore, Tuli et al. [261] proposed a blockchain-based framework that integrates

IoT-Fog-Cloud from end to end. This framework addresses limitations seen in other

Internet of Things frameworks, such as platform independence, security, resource

management, and multi-application support. It employs blockchain for authentication

and encryption of sensitive data. The system was tested using a pulse oximeter as

the IoT device, a smartphone as the gateway, and Raspberry Pi devices as workers.

As a case study, they conducted a sleep apnea analysis. Building upon their previous

research, Tuli et al. [262] proposed an IoT and Fog computing environment based on

ensemble deep learning for the automated diagnosis of heart diseases. They developed

a lightweight Fog architecture capable of processing sensor data such as body oxygen,

heart rate, ECG, and glucose levels from individuals. In the implementation of the

system, they used Raspberry Pi devices as workers and conducted tests using their

developed Android-based software.

While many studies on wearable devices focus on healthcare applications, Medina

et al. [263] developed a fog computing system for tracking the daily activities of

residents in their homes. The system uses accelerometers for movement detection,

29

Bluetooth low energy for location tracking, binary pressure sensors for detecting

whether someone is seated or lying down, and cookie sensors to identify activities

like brushing teeth or drinking. All these sensors detect residents’ activities using a

linguistic approach.

2.3.3.7 Fog computing in e-textiles

Beyond all the research areas mentioned so far, the literature on electronic textile

studies utilizing fog computing systems is relatively limited. A detailed investigation

reveals only two studies in this domain. Constant et al. [264] proposed an

architecture for wearable IoT devices that provides fog-based data transmission and

filtering services. They deployed their proposed system on Raspberry Pi and Intel

Edison development boards and compared the performance of these devices for fog

computing. Additionally, they developed a glove for physiotherapists in which they

used commercially available film-based flex sensors [265].

In another study, Wu et al. [266] developed textile-based ECG electrodes for medical

applications based on fog computing. They optimized the signal quality and comfort

parameters of these electrodes. The electrodes are designed to receive signals and

transmit data via Bluetooth in an electronic circuit. In tests conducted on 20 different

test subjects with no cardiovascular history, the design using a combination of cotton

(30%) and nylon fiber-coated silver (70%) demonstrated the best performance in terms

of Signal Quality and Comfort (SQC), based on signal-to-noise ratio and comfort

surveys. However, the integration of these electrodes into a fog-based system is

suggested as future work.

2.4 Positioning of the Thesis

Considering the current state of the art, the development of a fog-based framework for

e-textile products emerges as an open research area. The FogETex framework has been

developed for electronic textiles, filling the entire gap from developing e-textile-based

IoT devices to integrating fog-cloud computing, providing an end-to-end solution.

This framework ensures that e-textile applications operate in real-time in both indoor

and outdoor environments. Additionally, the system processes time-series data

30

in real-time while maintaining session information for users, with data flowing

continuously. Unlike many other fog computing systems, in this thesis, all software

and hardware components, from sensor acquisition to the cloud infrastructure, have

been implemented. In the first application, a gait phase recognition system is

implemented in real-time using a capacitive sensor placed on the ankle, along with

a deep learning-based model. In the second application, a system where soft robotics

and e-textile sensors are integrated with a computing system has been implemented to

work end-to-end.

31

32

3. FogETex FRAMEWORK

The FogETex framework provides a platform-independent fog computing and network

architecture specialized for electronic textile applications. Figure 3.1 illustrates

the general overview of the system architecture proposed in this study. The edge

layer, positioned at the bottom of the system hierarchy, encompasses T-IoT devices,

actuators, and gateway devices. The middle layer, known as the fog layer, contains

both worker and broker devices. At the top layer, there is a cloud device to which all

other devices are connected. The fog computing system caters to Local Area Network

(LAN) devices in settings such as homes, hospitals, and office spaces. Additionally, it

has the capability to establish connections with the fog infrastructure over a Wide Area

Network (WAN) using various network technologies including 4G, LTE, 5G, ADSL,

VDSL, and Fiber Internet. As a result, the system continues to operate seamlessly

in diverse environments such as central parks, forests, and beaches. The hardware

components, software elements, and network architecture constituting the system are

elaborated upon.

3.1 Hardware Components

This section provides an explanation of the physical devices mostly comprising edge

and fog layers of the FogETex framework, as well as their interrelationships.

3.1.1 Textile-based IoT devices

Textile-based IoT (T-IoT) devices in the edge layer are responsible for generating

data within the system. These devices provide physical or electrical signals via

textile-based sensors or textile electrodes. Sensors can be capacitive, resistive, or

inductive depending on their application areas. In addition, conductive fabrics can be

utilized as electrodes to capture signals from the human body, such as those originating

from the heart, muscles, or brain. This allows for the establishment of an electrical

33

Fog
Computing

Fog
Computing

Cloud
Computing

Fog
Computing

Fo
g

La
ye

r
C

lo
ud

 L
ay

er
Ed

ge
 L

ay
er

Wide Area Network
(Town Park)

Local Area Network
(Home)

Local Area Network
(Hospital)

Local Area Network
(Gym)

Wide Area Network
(Mountain)

Figure 3.1 : General Overview of the Proposed System Architecture.

connection between the body and the electronic circuit, enabling the acquisition of

these signals.

The signals from these sensors or electrodes can be collected directly by appropriate

electronic circuits connected to a microcontroller or a microprocessor. The gathered

textile sensor data can be transmitted to the gateway device via Serial Port, Bluetooth,

Wi-Fi, or directly to the broker/worker nodes within the fog layer. The microcontrollers

in this layer operate in close integration with the sensors. Comfort is one of the

most crucial parameters in textile-based products; therefore, in the design of electronic

circuits for e-textile applications, it is essential to use lightweight and flexible materials

as much as possible. Hence, heavy batteries cannot be employed. To ensure extended

battery life, energy-efficient microcontrollers are employed. Indeed, raw data is

typically transferred directly to the gateway device. In communication with the

gateway device, which is one layer above, low-energy communication protocols such

as Bluetooth Low Energy (BLE) are preferred to extend battery life. The T-IoT device

and the gateway device form a Personal Area Network (PAN) using BLE. If the fog

34

node and the gateway device are on the same network, they connect via LAN; if not,

they connect through the WAN. The gateway uses Wi-Fi for indoor activities and LTE

for outdoor activities.

3.1.2 Gateway devices

Gateway devices are responsible for connecting T-IoT devices to the Internet. They

serve as a bridge between the fog layer and T-IoT devices. They transmit the data

generated by textile sensors to the fog devices, receive and process the data in the

fog layer, and are also responsible for storing and visualizing the processed data.

Devices in this layer include those with wired or wireless Internet connectivity such

as smartphones, computers, and smartwatches. If the T-IoT device is equipped with

a module that enables direct Internet connectivity, such as Wi-Fi, Ethernet, or LTE

module, it can also act as a gateway device. In this case, it can directly connect to

the fog layer and manage data communication on its own. However, since e-textile

products are typically mobile and have low energy capacity, communication protocols

such as BLE are preferred over high-energy-consuming modules like Wi-Fi and LTE.

Due to the mobile nature of e-textile products and the limited range of BLE, Wi-Fi

or LTE is used for communication between the fog and edge layers. For all these

reasons, a device equipped with BLE, Wi-Fi, and LTE communication technologies is

preferred. The smartphones are the most suitable candidates for this role. Therefore, a

mobile application developed on the smartphone is responsible for receiving data from

T-IoT devices, transmitting it to the fog layer, and visualizing the incoming data.

In the communication scenario, if there is a fog node established within the LAN to

which the gateway device is connected, it primarily receives services from there. In

the event that there is no fog node in the LAN or if the devices in the fog node are

overloaded, a connection is established with the nearest available fog node outside the

LAN. For instance, in Figure 3.1, individuals exercising in the town park are connected

to a fog node located at home which is the closest available node, enabling them to

access services. On the other hand, individuals in the mountains are connected to a fog

node in the gym assigned by the cloud node.

35

3.1.3 Broker nodes

Each fog node is composed of worker nodes and only one broker node. The broker

node serves as the manager for its respective fog node as shown in Figure 3.2. The

initiation of a broker device in the network leads to the creation of a fog node. Worker

devices can connect to the fog node by establishing a connection with the broker

device in the respective network. The broker node continually receives work requests

from the gateway device and assigns the workload to the available worker nodes with

the least load. To perform this task, it periodically collects CPU and memory usage

information from the worker devices through configurable intervals. The broker node

also promptly conveys the availability information of the fog node to the cloud node.

Consequently, when a new user arrives, the cloud node can assign them to the nearest

and least congested fog node.

Additionally, data from devices connected via the WAN is routed to the worker nodes

through the broker node. As a result, even if the broker device were to experience a

failure due to an external attack, the other worker devices could continue to provide

services to the devices within the LAN.

The broker device in the fog node can have low performance, similar to that of the

worker devices, depending on the number of devices receiving services from the WAN.

The greater the load on the fog node and the amount of data passing through the broker,

the more powerful a broker will be needed.

3.1.4 Worker nodes

The worker node provides computation services to users within the system. Worker

nodes are assigned to users by the broker node. Subsequently, users establish a

socket connection with the worker node. This enables bidirectional communication

between the user and the worker node. The worker node performs the computation

tasks received from the user and sends real-time computation results back to the same

user. While performing data computations, a session record is maintained for each

user. This allows each user to access their own data preprocessing buffer and machine

learning model. The worker node continually transmits resource usage information to

36

Textile-based Pressure
Sensing Mat

Textile-based Sensing Glove

Textile-based Strain Sensor

Textile-based ECG Electrodes

Gateway
Device

Job/Result from LAN

Worker 1

Job/Result from WAN

Broker

Resource Information

Fog Node Cloud Node

Worker n Cloud

Resource
Manager

User Interface

Computing
Module

Socket Server
Resource
Manager

Proxy Module

User Interface

Socket Server

Resource
Manager

User Interface

Socket Server

Computing
Module

Module

Edge Node

Computing

Figure 3.2 : FogETex Hardware and Software Components.

the broker node in real time. This prevents the assignment of new users to nodes that

have exhausted their computation resources, thereby mitigating overload issues.

3.1.5 Cloud

The cloud node serves as the central hub for the entire architecture. While individual

modules within the system can perform their tasks independently without the cloud

node, the presence of the cloud node is essential for newly added worker devices and

users to integrate into the system. In order to establish a flexible architecture, new users

and devices initially communicate with the cloud node. As a result of a broker node

connecting to the cloud node, a new fog node is formed. Worker devices, when initially

connecting to the cloud, first learn the IP address of the broker node to which they

belong. Then, they establish a connection with the broker node to transmit resource

usage information to the broker node. The broker node, in turn, transmits the resource

usage information of the worker nodes that connect to and disconnect from the fog

node to the cloud layer.

Consequently, when a new user wishes to receive services from the system, they first

connect to the cloud, and the cloud assigns them the most suitable fog node. Then, the

user requests the assignment of a worker node from the broker node. The user receives

computing services from the assigned worker node. In this context, the cloud node

37

acts as the component that regulates and manages the system. Furthermore, system

administrators can monitor all broker and worker devices connected to the system and

their activities through the user interface provided by the cloud node.

3.2 Software Components

Devices within the FogETex framework require software components, including the

resource manager, the computing module, and the proxy module. The computing

module, which encompasses the data preprocessing module and deep learning module,

provides computational services for T-IoT devices. Additionally, within the framework

infrastructure, there is the user interface software component, allowing system

administrators to control connected devices and view their resources. Hence, the need

for additional worker devices to support the fog node can be easily identified, and

overload issues can be detected early on. Figure 3.2 illustrates the included software

components within the FogETex framework.

The cloud node, broker node, and worker node execute common software. Device

types can be configured for each device during the framework installation using a

snippet script with the parameter. This program also stores the device type in a cache

file, so even in the event of a configuration change due to an update, the device type can

be retrieved from the cache file, ensuring the preservation of device type configuration

information. Updates to the software components can be distributed to the nodes via a

GitHub repository. System administrators can send update requests to the devices via

HTTP RESTful API at specified intervals. The update request triggers a background

update script. After the updates are completed, this script retrieves the device type from

the cache file and allows the device to resume its operation in the defined manner.

The presence of the same source code on all devices does not necessarily mean that

all service devices operate in the same way. The customization of framework software

components is based on the device type configuration. In this section, the common and

distinct parts of the software components in the service devices are explained.

38

3.2.1 Resource manager

Resource management is crucial for ensuring system availability and preventing

overload issues. The resource manager module plays a role in the proper management

of resources and the assignment of the most suitable worker device to users. The

primary goal of the FogETex framework is to leverage the computational power of

worker devices to provide computational services to users. Additionally, user models,

data buffers, and user information are stored in RAM to facilitate fast processing.

Intermediate data is also temporarily held in memory during data processing. After the

computation process is complete, these data are cleaned from memory by the garbage

collector.

In the system, all devices providing computational services continuously monitor the

RAM and CPU usage of the device every second. When one of these two values

exceeds the predefined threshold, the device reports itself as “busy” to the layer above.

Additionally, network bandwidth usage, system uptime, framework operation time, as

well as incoming and outgoing request counts, are continuously monitored in real-time

within the system. This information is collected for reporting purposes and analysis by

system administrators. Resource monitoring and notification intervals can be modified

from the configuration file, allowing for more precise or longer-term data monitoring

settings. This flexibility enables system administrators to determine the most suitable

values of different applications.

Worker devices transmit resource usage data and availability statuses to broker devices,

which then utilize this information to assign users to the most suitable worker device.

Broker devices also transmit their own resource usage data and the resource usage data

of all devices connected to the fog node to the cloud. Furthermore, if all devices in

the fog node are busy, the fog node reports to the cloud layer that it is busy. If at least

one node is not busy, it reports the node as available. This information is used when

assigning users to fog nodes to determine if a node is available or not.

Devices transmit resource and availability information from bottom to top over

sockets, eliminating the need to reestablish a connection for each data transmission.

39

Additionally, when a socket connection is lost, the higher-level device is notified

and will refrain from assigning tasks to the disconnected node during allocation

processes. When the socket connection is initially established, the respective node

shares information such as its local IP, public IP, device coordinates, CPU properties,

RAM amount, disk information, and similar details with the higher layer. This

information can be utilized for allocation and analysis purposes when needed.

In the system, the allocation of suitable devices is facilitated by the information

provided by the resource manager. When a device that was previously assigned to

a fog node wishes to reconnect to the system, it can request a new worker device from

the broker using its old IP information. However, when a device connects to the system

for the first time and needs to find a suitable fog node, it must initially connect to the

cloud node and request the assignment of the most appropriate node. At this point, the

gateway, worker, and broker devices within the system must have the domain/static IP

information associated with the cloud node. Therefore, when setting up a new system

with the framework, this information should be entered into the configuration settings

of the devices.

Algorithm 1 illustrates the method by which the cloud node assigns a fog computing

node to a user. If a fog node exists in the LAN and at least one worker device on that

node is not busy, the user is directly assigned to this node, and the local IP address

of the broker device on the node is sent to the user. If there are no devices within the

LAN, the user is assigned to the geographically closest and available fog node, and the

public IP address of the respective network is sent to the user.

To calculate the distance between the user and fog nodes the Haversine formula [267]

is used. In this formula, the earth is accepted as a perfect spherical shape. In fact,

the earth is oblate spherical and has hills, valleys, and canyons. In the calculation

made using this formula, the error is 0.3%, and the maximum error is approximately

22 km [267]. Data on the Internet is transmitted through fiber optic cables in the

backbone, and the delay in fiber optics is approximately 5 μs/km [268]. The maximum

delay difference that could occur due to the calculation error would be 0.1 ms. Of

course, this error is relevant for very long distances; at the distances for which fog

40

Algorithm 1: Fog Node Assignment
Parameter: IP, Latitude, Longitude
Input : BrokerDevices
Output : BrokerIP, DeviceType
for broker in BrokerDevices do

if broker.PublicIP = IP and !broker.Busy then
BrokerIP← broker.LocalIP;
DeviceType← “LAN′′;
return;

end
end
CN← null;
CNdistance← In f ;
for broker in BrokerDevices do

if broker.Busy then
continue;

end
distance← Distance(broker,Latitude,Longitude);
if CN = null or CNdistance > distance then

CN← broker;
CNdistance← distance;

end
end
if CN ̸= null then

BrokerIP←CN.PublicIP;
DeviceType← “WAN′′;

end
return;

computing is designed to operate, the latency difference caused by the error is around

a few μs. Therefore, since small latency differences cannot affect system performance

considerably, the approximate distance is enough for the proposed application. Firstly,

the square of half the cord length between two points is specified as a and calculated

as follows:

a = sin2(
∆φ

2
)+ cos(φ1) · cos(φ2) · sin2(

∆λ

2
), (3.1)

where φ1 is the latitude of the user, φ2 is the latitude of the Candidate Node (CN), ∆φ

is the difference of the latitudes of the user and CN, and ∆λ is the difference of the

longitudes of the user and CN. Then, the angular distance, θ , between two points is

41

calculated as follows:

θ = 2 ·atan2(
√

a,
√

1−a). (3.2)

Using angular distance and the radius of the Earth, the distance between two points is

calculated as follows:

d = R ·θ , (3.3)

where R is the mean radius of the Earth.

Using the provided broker IP address, the user requests the assignment of a suitable

worker node from the broker device. For devices to connect to the broker from outside

using the public IP, the port number of the service program must be forwarded to the

public IP using the port forwarding method. The method for selecting the most suitable

worker node by the broker device is provided in Algorithm 2.

Algorithm 2: Worker Node Assignment
Input : WorkerDevices
Output : WorkerIP
WorkerIP← null;
CNload← In f ;
for worker in WorkerDevices do

if worker.Busy then
continue;

end
if CNload > worker.CPUload then

WorkerIP← worker.LocalIP;
CNload← worker.CPUload;

end
end
return;

The broker device assigns the user to the worker node with the lowest CPU load and

is not busy among the worker devices connected to the fog node, returning the local IP

address of the device. If the fog node assigned to the user is within the LAN, the user

directly connects to the worker device. However, if the fog node is on the WAN, the

user connects to the worker device via the public IP through the broker.

42

3.2.2 Computing module

The computing module in the FogETex framework is responsible for executing the

tasks requested by users. Computing modules exist in the cloud node, broker, and

worker devices within the system. When necessary, computation tasks can be executed

not only on worker devices but also on cloud and broker devices. In cases where

there are no fog nodes in the system, users can obtain this service from the cloud.

Additionally, when the worker devices assigned to their fog node are not available,

users can also receive this service from the broker device. Therefore, we can refer to

broker, worker, and cloud nodes as computing service devices. In the ideal scenario, it

is not desirable for broker and cloud devices to perform computing services, as they are

better suited for their primary tasks. Therefore, the first attempt is to assign a worker

node to users. Otherwise, broker and cloud nodes can provide computing services.

The computing module consists of two sub-modules: the data preprocessing module

and the deep learning module. Users send their data to the service-providing device,

which first preprocesses the data, and then the deep learning module performs

predictive tasks based on the model in the system for the specific application. These

two modules are designed using the Adapter design pattern [269], allowing new

applications to be easily added to the system without the need for changes to the core

infrastructure of the system.

3.2.2.1 Data preprocessing module

T-IoT devices need to be as lightweight and compact as possible since they are used on

textile products. Therefore, the use of powerful batteries in these devices is not feasible

due to weight constraints. Similarly, powerful microcontrollers cannot be used in these

devices to extend battery life. For these reasons, T-IoT devices focus on collecting raw

sensor data rather than performing extensive computational tasks. All computation

tasks, including data preprocessing, are carried out on worker devices. This module is

responsible for tasks such as filtering the raw sensor data, extracting nominal, ordinal,

quantitative, and aggregated features using windowing techniques.

43

Electronic textile sensors typically produce time-series data. Directly applying

time-series data to machine learning models is not always appropriate due to the

presence of mechanical and electrical noise in the sensor data. Therefore, sensor data

is initially filtered and subjected to normalization to mitigate noise. Subsequently,

the time-series data is stored in a buffer, and time-series features are extracted using

the windowing method. The deep learning module utilizes these features to make

application-specific predictions.

3.2.2.2 Deep learning module

The deep learning module is responsible for making sense of the extracted features

from the data preprocessing module and providing users with application-specific

outputs regarding detection, recognition, classification, regression, clustering, and

prediction tasks. The deep learning module operates as a replica of the brain,

consisting of many neurons and their interconnections. Each neuron’s value involves

mathematical computations that increase in complexity depending on the number of

neurons in the previous layer. Calculating the weights of the neural network and output

values of all neurons requires significant computational power. The system’s highest

computational power is utilized by this module. Depending on the available hardware

resources, these calculations can also be performed by graphics processing units or

tensor processing units, enabling faster response times.

3.2.3 Proxy module

The proxy module serves as a bridge between gateway devices and worker devices.

Allowing all devices to be accessible from the Internet makes them vulnerable to

external attacks. As a result, there is a risk that an attack on one fog node’s devices

could put the entire node at risk. If all fog nodes become unavailable, it can impact

many users. Therefore, in the FogETex framework, direct access to worker devices

via the WAN is restricted. Only LAN devices can request services from them.

This restriction helps enhance security by reducing the attack surface exposed to the

Internet.

44

When a device from the WAN wants to request services from a worker device, it will

send its requests to the broker device, as if it were requesting them directly from the

worker device. The broker device then forwards these requests to the worker device

and relays the responses back to the gateway device. In this way, the broker device

acts as a man-in-the-middle between the worker node and the gateway device.

In the event of a potential attack, the broker device may sustain damage, but the other

worker devices will continue to provide services to LAN devices. This is expected

to reduce the availability problems in worker devices, enhancing the resilience of the

overall system to attacks and ensuring continued service availability to LAN devices.

3.2.4 User interface

The user interface module contains system-level information such as real-time resource

consumption, hardware details, and device-specific information for worker, broker,

and cloud devices as shown in Figure 3.3-3.5. This information is primarily used

by system administrators for device monitoring, network structure monitoring, and

troubleshooting issues like overloading.

Figure 3.3 : Worker User Interface.

45

Figure 3.4 : Broker User Interface.

Figure 3.5 : Cloud User Interface.

46

With the user interface, system administrators can view 1 static information provided

by the resource manager, such as device type, local and global IP addresses, device

location data, CPU cores and specifications, RAM information, and hard disk details.

This interface provides a comprehensive view of the system’s status and components,

allowing administrators to manage and optimize the system effectively. In addition, it

is possible to monitor 2 disk usage, 3 memory usage, 4 device operating times, 5

the runtime of the FogETex system, 6 CPU load over time, 7 memory usage over

time, 8 the number of requests and responses sent to the device over time, 9 network

bandwidth usage over time, and 10 CPU core loads.

Furthermore, the user interface can also display 11 connected devices for the broker

device and the cloud device. In the user interface of the broker device, connected

worker devices can be viewed, and in the user interface of the cloud device, connected

broker devices and their associated worker devices can be displayed. This allows for a

comprehensive understanding of the entire system topology through the user interface

of the cloud device.

Figure 3.6 illustrates the user interface of the gateway device. The user interface on

the left allows the selection of Bluetooth devices and establishes a connection with

the T-IoT device. Once the connection is established via Bluetooth, the user interface

on the right opens. From this screen, a connection with the fog computing system

can be established, and data transfer begins automatically. A predefined amount of

data received via Bluetooth is sent to the worker device. Through the interface, the

frequency of incoming data via Bluetooth, the real-time response time of the worker

device, and the count of transmitted data can be monitored.

3.3 Network Structure

The FogETex architecture has a hybrid network structure. It uses the Hyper-Text

Transfer Protocol (HTTP) request protocol for one-time requests and the Web socket

protocol for sequential requests. Attempting to use the same communication protocol

for different needs in the system results in unnecessary delays and the excessive use of

47

Figure 3.6 : Gateway Device Graphical User Interface.

memory, CPU, and network resources. Therefore, in this framework, the most suitable

protocol is used for each task to save time and resources.

3.3.1 RESTful API communication

The HTTP protocol is used for fog node and worker node assignment queries and Web

page requests of the user interface. During these queries, the user sends a single request

to the device, and then the communication is terminated. RESTful APIs are used for

node assignments, and a Web application is utilized within the user interface, all of

which operate as services on the same HTTP server.

Figure 3.7 illustrates the connection diagram for users with fog nodes within the LAN.

In this scenario, it is assumed that the user joins the network for the first time. Since

the user is not aware of any devices in the system, it starts by sending an HTTP request

query to the RESTful API of the cloud device, requesting the assignment of a suitable

fog node. The cloud device also uses Algorithm 1 to return the local IP address of the

48

broker device within the LAN. This time, the user requests the assignment of a suitable

worker device from the broker’s RESTful API. The broker uses Algorithm 2 to assign

the worker device with the least load to the user. When determining the worker with

the lowest load in the fog node, the first condition is that the worker device must

not be busy. The busy condition is defined as having memory or CPU usage above

pre-determined threshold values. Among the non-busy workers, the device with the

least CPU usage is assigned to the user. The reason for selecting CPU as a parameter

is that the incoming job requests demand intensive CPU resources.

If the user has previously connected to a fog node within their network, they will

request the worker assignment directly from the broker instead of going to the cloud.

Gateway Broker Worker Cloud

Assign Node

Return Broker Local IP

Assign Worker

Return Worker
Local IP

Start Session

Response

Job

Job Result

Lo
ca

l A
re

a
N

e
tw

o
rk

WebSocketWebSocket

HTTPHTTP

Active SessionActive Session

WebSocket

HTTP

Active Session

WebSocket

HTTP

Active Session

Figure 3.7 : Connection Diagram of Users with A Fog Node in their LAN.

If there is no fog node in the LAN, the appropriate worker device assignment is made

according to Figure 3.8, and the user performs calculation requests using the network

protocols in that network. Similarly, a query is made to the cloud, but since there is

no suitable fog node in the LAN, Algorithm 1 returns the global IP address of the

nearest and available fog node to the user based on location. Subsequently, the user

49

accesses the broker device using this global IP and once again requests the assignment

of a worker device through the RESTful API. If a user has received services from a

fog node over the WAN, and wishes to establish a connection again, they must revert

to the cloud to initiate the inquiry process from the beginning. This ensures that they

do not miss any newly opened fog nodes that might be closer or within their LAN.

Gateway Broker Worker Cloud

Assign Node

Return Node Global IP

Assign Worker

Return Worker
Local IP

Start Session

Response

Job

Job Result

Start Session

Response

Job

Job Result

W
id

e
A

re
a

N
et

w
o

rk

WebSocketWebSocket

HTTPHTTP

Active SessionActive Session

WebSocket

HTTP

Active Session

WebSocket

HTTP

Active Session

Figure 3.8 : Connection Diagram of Users Without a Fog Node in their LAN.

3.3.2 Socket communication

After the assignment of a worker device, users transmit sensor data sequentially and

in raw format to the worker device, expecting data in the same format in return. If this

process were attempted using RESTful API, the user would constantly send data to the

other end and establish a connection for each job request. If delays occurred in job

requests, there would be a high number of active connections at the same time, causing

increased resource utilization at the service point.

In the Web socket architecture, asynchronous bidirectional data transfer can occur

between the user and the service-providing device over a single connection. Incoming

50

job requests accumulate in a queue along with the assigned user ID, and when the

computation process for the respective user is completed, the job request is sent back

to the user via socket.

In Figure 3.7, a user who wants to establish a connection over the LAN can directly

communicate with the worker node using the local IP address of the worker node.

After the socket connection is established, the user sends a “start session” message to

indicate the desire to receive services. In the background, the worker device creates

an object for itself, including specialized data buffers, machine learning models,

calibration parameters, and other variables. Once all these processes are completed,

the user is informed that the application is ready, and it can now receive services.

Afterwards, the gateway device transmits the sensor data it receives via Bluetooth to

the worker node and uses the incoming responses for various tasks such as control

of the system, visualization, alert systems, and analysis within the application. The

session on the worker device remains open as long as the user is actively connected.

When the connection is lost, the session is closed, and all data specifically held for the

respective user is cleared.

If there is no suitable fog node in the user’s LAN, the user is assigned the nearest and

most suitable fog node via the WAN (Figure 3.8). Then, the broker in the fog node

shares the local IP address of a suitable worker device with the user. Since the user is

on the WAN, a direct connection cannot be established with the worker via the local IP.

First, the user informs the socket server of the broker device using the local IP address

and establishes a connection. The socket server passes this information to the proxy

module in the background, creating a virtual user. This virtual user then connects to

the worker using its own socket client. Job requests are first sent to the broker, and

the broker forwards them to the worker. The worker then communicates its responses

to the virtual user, which is connected to it. Afterward, the proxy module relays these

messages to the user through its socket server. This process ensures a more secure way

for devices on the WAN to receive services. The sessions active in the proxy module

on the broker device and the computing module on the worker device remain open as

long as the user is actively receiving services. When the connection between the user

51

and the proxy module is lost, the proxy module severs the connection to the worker,

subsequently closing sessions on both the broker and worker devices.

3.3.3 Scalability handling

FogETex architecture follows a hierarchical structure where fog nodes establish a

top-down hierarchy for devices to find suitable fog nodes, although they have their

own administrative autonomy. However, the availability information of devices is still

generated by worker and broker devices. The cloud device does not assign tasks or

devices to nodes that do not indicate their availability. To set up a new fog node in

the system, the broker node needs to connect to the cloud. After the broker node is

connected, worker devices on the same LAN can join the system by learning the IP

address of the broker device via the RESTful API of the cloud device. Worker devices

are connected to the broker, and the broker, in turn, is connected to the cloud, sharing

resource information from bottom to top in this hierarchy.

Adding a new broker or worker node to the system is straightforward. The devices only

require the static IP or domain information of the cloud node and the device type to

be entered. All other organizational aspects are managed by the FogETex framework.

There is no limitation on the number of fog nodes and workers in the system. However,

if multiple broker devices connect from the same network, the first one to connect will

be assigned as the primary broker for the workers, while the others will remain passive.

Therefore, additional worker devices can be easily added to the system as needed and

made available to users.

3.4 Concurrency Control Techniques

Due to the wide range of machine learning libraries and the relatively simpler

development process, the computing module of the FogETex framework has been

developed using Python to enable other developers to easily write applications for the

framework. The biggest obstacle to effectively utilizing processor cores is the Global

Interpreter Lock (GIL) in the Python interpreter. The GIL mechanism only allows

one thread to execute Python code at a time, thus preventing concurrency issues that

may arise in memory and data management. However, it also introduces performance

52

issues in parallel operations and CPU-intensive tasks [270]. Therefore, performance

improvements using different concurrency techniques are required in this context.

The FogETex framework is designed to serve multiple users efficiently. Effective

utilization of processor cores is crucial for accommodating a larger number of

users. The FogETex framework incorporates single-threaded, multi-threaded, and

multi-process concurrency methods. All three methods utilize the WebSocket

Inter-Process Communication (IPC) mechanism.

Since the socket server and the computing module operate in separate processes

on computing service devices, inter-process communication is critical for system

performance. In addition to the WebSocket IPC method, the FogETex framework

supports First In First Out IPC (FIFO IPC) and RESTful API IPC methods through

the multi-process concurrency approach. In total, five different concurrency and IPC

methods can be configured within the FogETex system.

3.4.1 Single-threaded data processing via WebSocket IPC

Single-threaded data processing via the WebSocket IPC method is the initially

proposed approach. Figure 3.9 illustrates the data communication flow of this

method. It has a simpler structure compared to other methods. In all methods, users

send computation requests to the computing service devices through a WebSocket

connection.

User 1

...

User 2

User 3

User 4

User n

Socket
Server

Socket Client

Queue

Model
Communication

Module

Computing
Module

Worker

WebSocket Memory

Figure 3.9 : Single-threaded Data Processing via WebSocket IPC.

53

Data received by the Socket Server is forwarded to the computing module via

WebSocket. The socket client module within the computing module adds the data

to a queue. Once the computation requests that arrived earlier are completed, the data

is processed using the developed model and returned to the user through the socket

client and socket server. Since all operations within the computing module occur in

the same process, data is transferred directly through memory.

3.4.2 Multi-threaded data processing via WebSocket IPC

The second method is multi-threaded data processing via the WebSocket IPC method

(Figure 3.10). In the previous method, each incoming computation request is added to

the queue, and the new request must wait for the completion of the earlier ones. In the

multi-threaded method, computation requests in separate threads do not have to wait

for each other. This aims to reduce queue times.

In this method, each thread has its own dedicated socket client, queue, and model. This

allows computation requests in different threads to be executed in parallel. Particularly

in busy-wait operations, when the processor is idle, the computing service device can

serve other users through another thread.

User 1

...

User 2

User 3

User 4

User n

Socket
Server

Communication
Module

Socket Client Queue Model

Thread 1

Socket Client Queue Model

Thread 2

Socket Client Queue Model

Thread m

...

Worker

WebSocket Memory

Figure 3.10 : Multi-threaded Data Processing via WebSocket IPC

54

3.4.3 Multi-process data processing via WebSocket IPC

The third method is multi-threaded data processing via WebSocket IPC (Figure 3.11).

Due to the Global Interpreter Lock (GIL) issue in Python, multi-threaded structures can

behave like single-threaded ones. Therefore, this method was developed to achieve

higher performance. Similar to the multi-threaded method, data comes from the

socket server via WebSocket. The key difference is that in this method, threads are

replaced by processes. This approach aims to take better advantage of the processor’s

computational capacity by allowing processes to run on different processor cores.

User 1

...

User 2

User 3

User 4

User n

Socket
Server

Communication
Module

Socket Client Queue Model

Process 1

Socket Client Queue Model

Process 2

Socket Client Queue Model

Process m

...

Worker

WebSocket Memory

Figure 3.11 : Multi-process Data Processing via WebSocket IPC.

3.4.4 Multi-process data processing via RESTful API

The fourth method is multi-process data processing via RESTful API (Figure 3.12).

This method, like the third method, uses a multi-process concurrency approach but

employs a RESTful API for IPC. Each process contains its own RESTful API server.

When a computation request arrives, the socket server sends the data to the RESTful

API using the HTTP method. Each incoming data request immediately begins the

execution process. The HTTP connection remains open throughout the computation,

and the response is awaited by the socket server. With this method, queue delays have

been reduced to zero.

55

User 1

...

User 2

User 3

User 4

User n

Socket
Server

RESTful API Model

RESTful API Model

RESTful API Model

Worker

Communication
Module

Process 1

Process 2

Process m

...

HTTP WebSocket Memory

Figure 3.12 : Multi-process Data Processing via RESTful API.

3.4.5 Multi-process data processing via FIFO IPC

The fifth method is multi-process data processing via FIFO IPC (Figure 3.13). In this

method, data between the socket server and the computing module is transferred using

a special IPC method called FIFO. FIFO IPC, also known as the pipe method, involves

two processes, one acting as the sender and the other as the receiver. Therefore, two

FIFOs are required for full-duplex communication between the processes. The input

WebSocket Input FIFO Output FIFO Memory

User 1

...

User 2

User 3

User 4

User n

Socket
Server

FIFO Listener Model

FIFO Listener Model

FIFO Listener Model

Worker

Communication
Module

Process 1

Process 2

Process m

...

Figure 3.13 : Multi-process Data Processing via FIFO IPC.

56

FIFO facilitates communication from the socket server to the FIFO listener, while the

output FIFO handles communication in the reverse direction.

Each time new data arrives, the FIFO listener sends the computation request to the

model and does not read new data until the computation is complete. In this way, the

FIFO structure also serves as a hidden queue.

Data is transmitted to processes through memory, making this method expected to

be more efficient compared to other approaches. Additionally, running operations in

different processes will allow for better utilization of multi-core processors.

57

58

4. GAIT PHASE RECOGNITION SYSTEM USING FogETex

Gait analysis is utilized in various applications such as rehabilitation, robotics, gait

biometrics, biomechanics, sports analysis, and disease monitoring [271]. In our

previous study, we developed a deep learning-based gait phase recognition system

using textile-based capacitive strain sensor [22]. It is important to emphasize that the

aim of our current study is not to design and implement a gait recognition system from

scratch and evaluate its performance using the given T-IoT system, which was indeed

already investigated in [22]. Instead, we will utilize the data created by the participants

during the interaction with this system in that study for the sake of servicing T-IoT

data to be fed into our proposed FogETex framework. Therefore, the next subsections

elaborate on the workload created by a T-IoT application with respect to the data

processing and deep learning methods.

4.1 T-IoT Device Design

The T-IoT device includes a textile-based capacitive sensor [44], a DFRobot Beetle

BLE development board (Transmitter), an MPU6050 6-axis Inertial Measurement Unit

(IMU), and a Lithium Polymer (LiPo) battery as shown in Figure 4.1(a). The T-IoT

device is integrated into a knee brace with its capacitive sensor placed [47] on the knee

joint. The textile-based capacitive sensor is formed by adding a silicon layer, which

serves as the dielectric, between two conductive fabrics acting as electrodes, and it

functions as a parallel plate capacitor. The stretching caused by joint movement leads

to an increase in capacitance. Similarly, a decrease in the stretch results in a reduction

in capacitance.

The electronic circuit design of the T-IoT device is shown in Figure 4.1(b). The Beetle

BLE (Transmitter) consists of an Arduino Uno and a Bluetooth module inside. The

Arduino Uno features an Atmel ATmega 328 microcontroller. Embedded software,

written in C++, is used to collect data at a sampling frequency of 50 Hz. The

microcontroller measures the capacitance of the textile-based strain sensor using a

59

voltage divider method and simultaneously receives real-time data from the IMU

sensor via I2C protocol, sending this information to the gateway device via Bluetooth

module (Texas Instrument, CC2540). The T-IoT device is powered by a single LiPo

battery connected to the Beetle BLE.

Arduino
Uno

Bluetooth
Module

Inertial
Measurement Unit

V
in

G
ND SD

A
SC

L

V
ou

t
G

ND SD
A

SC
L

+ -

Beetle BLE
(UNO + BLE Module)

Inertial
Measurement Unit

Vout
GND

RX
TX

Vin
GND

TX
RX

V
in

A0

D5

G
ND

Textile-Based
Capacitive

Sensor

LiPo Battery

Textile-Based
Capacitive

Sensor

a) b)

Lipo Battery is
under Beetle BLE

Figure 4.1 : T-IoT Device for Gait Phase Recognition System: a) Actual Photo and b)
Schematic Illustration.

4.1.1 Measurement based on textile-based capacitive strain sensor

The capacitive sensor placed on top of the knee brace changes its length depending

on the bending of the knee. The capacitance of the sensor increases proportionally

with the length. This allows for the detection of knee movement based on the sensor’s

capacitance value.

Textile-based capacitors cannot typically utilize capacitive measurement methods such

as charge/discharge due to their capacitance values falling between 30 and 100 pF.

Therefore, an alternative measurement method known as voltage divider is employed.

In this method, one end of the capacitive sensor is connected to a digital pin of the

microcontroller, while the other end is connected to an analog pin. Charging occurs via

the digital pin. The analog pin generates a noise capacitance within the microcontroller

known as stray capacitance. The charged capacitance forms a voltage divider with the

stray capacitance. Voltage measurement is carried out via the analog pin, and the

capacitance value of the sensor (Cx) is calculated using the following equation.

Cx =
Vin ·Cre f

Vout−Vin
(4.1)

60

where Vin represents the input voltage measured by the Analog-to-Digital Converter

(ADC), Cre f denotes the stray capacitance (33.1 pF), and Vout is the supply voltage

that charges the capacitance. Given the known values of Vout and Cre f , the capacitance

value of the sensor can be easily determined.

4.1.2 Measurement based on IMU sensor

The gyroscope integrated inside the IMU sensor is responsible for measuring angular

velocity in three different directions. These directions are referred to as the x (pitch),

y (roll), and z (yaw) axes. The Inertial Measurement Unit (IMU) was positioned

on the knee in such a way that the gyroscope’s x-axis (gyro-x) was aligned with the

direction of gravity, the y-axis (gyro-y) was perfectly parallel to the ground, and the

z-axis (gyro-z) was perpendicular to the surface of the leg as shown in Figure 4.2.

This was done in order to get gait phase information that was representative of the

individual’s gait. Because of this, gyro-z measurements have a negative slope when

they are being performed in flexion motion, but they have a positive slope when they

are being performed in extension motion.

z-axis
(gyro-z)

x-axis
(gyro-x)

Textile-Based
Capacitive Sensor

T-IoT
Device Case

Figure 4.2 : T-IoT Device Placement on the Knee and IMU Axes (x and z).

61

4.2 Data Labeling

Using a Butterworth filter of the third order, the z component of the gyroscope data that

was obtained is filtered in order to remove noise that is caused by gravity, vibration

in the leg region, and other external influences at the same time. Phase detection

utilizing gyro-z data has been accomplished through the utilization of the local extrema

detection approach, which refers to a location in an open interval at which the

greatest or minimum value of the function is attained [272]–[275]. Calculations were

made to determine the occurrences of local minima and maxima in order to identify

phase-shifting locations. One example is shown in Figure 4.3, which is a plot of

the gyro-z data for two consecutive steps. The local minima points correspond to

Figure 4.3 : Gyro-z data.

the toe-off and heel-strike phases. During these phases, the leg engages in flexion

movement, which results in a decrease in angular velocity in the regions along the

z-axis. During the mid-swing and heel-off phases, the leg swings forward and provides

extension action, which ultimately results in a positive angular velocity along the

z-axis. The information that is acquired from these measurements is then utilized as

ground truth values for the purpose of training the model on capacitive sensor data.

62

4.3 Dataset

Data was collected with a sampling frequency of 50 Hz from a total of 5 subjects aged

between 21 and 35 on tracks prepared for step sizes of 20, 30, 40, 50, and 60 cm

(Table 4.1). Participants were instructed to walk on the tracks by stepping on markers

placed on the ground. Each participant was asked to perform 5 consecutive steps on

each track, and each test was repeated 10 times. Thus, there are a total of 50 test data

for each test subject. The data for each step size is divided into 80% for training and

20% for testing.

Table 4.1 : Demographic information of test subjects.

Gender Age Height Weight
Male 21 170 cm 65 kg

Female 35 160 cm 62 kg
Male 32 165 cm 72 kg

Female 22 172 cm 63 kg
Male 21 183 cm 75 kg

4.4 Data Preprocessing

In the system, incoming capacitance data is processed through a real-time Butterworth

filter to reduce noise. The filtered data is maintained in a 10-sample window. During

the training phase, with a slide count of 5, the first, second, and third derivatives

of the capacitance values are computed to extract velocity, acceleration, and jerk

features. These features, along with the filtered capacitance value, undergo standard

normalization using the following formula for each feature individually:

Z =
x−µ

σ
(4.2)

where Z is the normalized feature value, x is the feature value, µ is the mean of the

feature, σ is the standard deviation of the feature. To perform real-time normalization,

the values of µ (mean) and σ (standard deviation) for each feature must be known. In

real-time systems, these values are typically obtained through a calibration process to

enable the normalization process to be conducted in real-time.

63

During both the training and testing phases, the first test file from the trials with

different step lengths for each test subject is utilized as calibration data to calculate the

normalization parameters. The features of the test subject data from the same course

are then normalized using these parameters. Subsequently, the machine learning model

is trained, and after training, the model is tested.

In the proposed real-time system, the initial 6 seconds of data are used for calibration.

During this period, the model does not make predictions and only stores the extracted

features in a list. At the end of this interval, µ and σ values are computed for each

feature. Subsequently, when new data arrives, the normalized values of the features

are sent to the model, and the model predicts the gait phase in real time.

4.5 Deep Learning Model

A machine learning model based on Long Short-Term Memory (LSTM) was employed

to predict the gait phase from capacitive sensor data of the T-IoT device. LSTM-based

models offer the advantage of capturing temporal dependencies in time series

data [276], which is particularly relevant as capacitive sensors, like other e-textile

sensors, generate time series data. The model consists of two LSTM modules, each

with four hidden layers, and a fully connected linear neural network module with 64

neurons. The entire model was trained using the Adam optimizer with a learning

rate of 0.001. The performance of the model was evaluated based on the multi-class

cross-entropy loss function, which was defined as follows:

Loss =
M

∑
c=1

yc · log(ŷc), (4.3)

where c is the class number, M is number of classes, yc is true probability of the class,

and ŷc is the predicted probability of the class.

4.6 Experiments

The effectiveness of the FogETex framework was demonstrated by deploying it to

devices that constitute the fog architecture. The gate phase recognition system was

used in performance tests as a dedicated application. Tests were conducted using

64

a mock client to allow for analyzing the system in ideal conditions by eliminating

operating system delays and Bluetooth jitter caused by the communication with the

T-IoT device. Additionally, the same tests were repeated on a physical mobile device

as the actual client to represent real-world conditions which were disregarded in the

mock client.

4.6.1 Experimental setup

The devices and their respective configurations used in the tests of the FogETex

framework are provided below:

1 Broker node: Dell Inspiron 15 5000 (Intel Core i7-8550U CPU @1.80GHz,
32GB DDR4 RAM, 240GB SSD, and Windows 11 Enterprise 64-bit). Software:
Node.js v18.15.0 and Python 3.9.13.
2 Worker node: Raspberry Pi 4 Model B (Broadcom BCM2711, Quad core

Cortex-A72 (ARM v8) 64-bit SoC CPU @1.8GHz, 8GB LPDDR4-3200 SDRAM,
32GB Micro SDHC Class 10).
3 Network switch: ZYXEL GS-1100-16 GIGABIT 16 Port Switch.
4 Wi-Fi Access Point (AP): Huwai HG8245X6 Fiber Optic Modem (ISP: Turkcell

Superonline, Download speed: 500Mbps, Upload speed: 20Mbps).
5 Cloud device: Digital Ocean VPS (2 x Dedicated Premium Intel CPU, 8GB

RAM, 50GB SSD, Cloud Location: Frankfurt/Germany).
6 Mock client: Lenovo ThinkPad X1Carbon (Intel Core i7-5600U CPU

@2.60GHz, 8GB DDR3 RAM, 240GB SSD, and Windows 10 Pro 64-bit). Software:
Node.js v18.15.0 and Python 3.7.15.
7 Gateway device (Actual client): Samsung A14 mobile phone (4GB RAM

128GB Memory with Android 13).
8 T-IoT device: DFRobot Beetle BLE v1.1 with Bluetooth 4.0 and textile-based

capacitive sensor.
9 LTE modem: iPhone 8 Plus (3GB RAM, 64GB Memory with iOS 16).

Figure 4.4 depicts the connection diagram of the devices used for the experimental

setup to represent a typical usage scenario utilizing FogETex framework. The

experimental setup consists of two test beds: a Wi-Fi (IEEE 802.11ac) testbed and

a cellular (LTE) testbed.

4.6.1.1 Wi-Fi testbed

In the Wi-Fi (IEEE 802.11ac) testbed, clients and the fog node are in the same LAN.

Broker node 1 and worker node 2 are connected via a network switch 3 linked

65

LTE Worker

LTE Cloud

Cellular (LTE) Testbed

Broker

Cloud

Worker

Wi-Fi (IEEE 802.11ac) Testbed

④ Gateway① Mock Client

⑥ Worker

④ Gateway
③ T-IoT Device

③ T-IoT Device

⑤ Broker

② LTE Modem① Mock Client

⑨ Cloud

Lo
ca

l A
re

a
N

et
w

or
k

In
te

rn
et

⑦ Network Switch

⑧ Wi-Fi AP

Figure 4.4 : Experimental Setup Device Connection Diagram.

to the Wi-Fi AP 4 . The connections between the worker, broker, network switch,

and Wi-Fi AP are established via Ethernet connections. The fog node is linked to the

Internet through fiber Internet via the Wi-Fi AP. The devices in the LAN access the

cloud node 5 via the Fiber Internet.

The worker node is responsible for computational serving to clients, but the broker

node and cloud node can also give this service. Therefore, the worker node, the broker

node, and the cloud node are defined as computing service devices. Since there is

one cloud node and one broker node in the system, performance comparisons were

conducted using a single worker device to ensure testing in the same environment.

This article primarily focuses on the development of a system catering to the needs of

66

electronic textiles, rather than dynamic resource allocation and computing offloading

in multi-worker systems.

The sole responsibility of the mock client 6 is to send previously recorded T-IoT data

to the computing service devices every 20 ms so that we can measure the performance

of these devices. The mock client connects to the Wi-Fi AP using the wireless

networking standard IEEE 802.11ac in this testbed.

The gateway device 7 conducts real-time device testing. The T-IoT device 8

measures the capacitance of the strain sensor and transmits this data to the gateway

device via Bluetooth. The gateway device transfers the data received from the T-IoT

device to the respective computing service device via Wi-Fi in the Wi-Fi testbed. As a

result, the performance of the framework is monitored under the control of a real-time

device.

4.6.1.2 Cellular testbed

In the cellular (LTE) testbed, clients transfer the data to the worker node 2 and the

cloud node 5 through LTE. The LTE testbed represents receiving services from a fog

node over the WAN. The broker node 1 in the fog node acts as an intermediary for

assigning workers within the fog and serves as a proxy for cellular tests. Hence, the

broker node is not utilized as a computing service device in the LTE testbed.

The mock client 6 sends its data to the worker node and the cloud node through an

LTE modem 9 connected via USB. The gateway device 7 is connected to the fog

node and cloud node via LTE. The attributes such as the source, quantity, and quality

of the sensor data are the same as in the Wi-Fi testbed. Differently, the mock client and

gateway device send their data to computing service devices over the Internet.

4.6.2 Experimental scenarios

The performance of the FogETex framework was evaluated through system tests using

a mock client and an actual client. The tests were conducted using recorded data from

the mock client. Test data is initially stored in memory and then sent to computing

service devices at 20 ms intervals based on the test configuration. Both outgoing

67

and incoming data are tracked with timestamp information. On the actual client side,

real-time data is received from the T-IoT device with a sampling frequency of 50 Hz,

and this data is instantly forwarded to the computing service devices.

The resource consumption data of the computing service devices (CPU load, memory

usage, and bandwidth) are sent in real-time to the mock client program through a Web

socket connection using a NodeJS-based program. The code for measuring system

resources in the program is the same as the resource manager mentioned in Sec 3.2.1.

The threshold values for CPU and memory resources of computing service devices

have been set to 70% heuristically. Devices exceeding this threshold report themselves

as “busy” due to resource usage beyond this limit.

Seven identical data sets were used in the experiments, each set belonging to

data acquisition session and being 5 minutes long. For the arbitration tests, we

established and closed connections 25 times consequently. Unless otherwise specified

in characteristic graphs, bar graphs represent the mean and standard deviation values

of the results obtained in the experiments.

The Wi-Fi testbed has three main experimental scenarios “Connection to worker,

broker, and cloud”. In these scenarios, both the mock client and the actual client

connect separately to those respective devices to receive service. In all these scenarios,

the IP information of the respective devices is known by the clients, allowing them

to connect directly. The arbitration process includes an additional “Discovery and

connection to worker” experimental scenario for client devices connecting to the

system for the first time and seeking service from the worker. In this specific scenario

as outlined in Figure 3.7, the appropriate fog node and worker node are assigned,

followed by the connection to the worker device.

In the LTE testbed, there exist only “Connection to worker and cloud” scenarios.

The clients establish connections to both devices via LTE and receive computational

services. In this test bed, the broker device acts as a proxy and is responsible for

communication between workers and clients. In the arbitration process, the clients

in the WAN, despite having received services from worker devices before, request a

new fog node assignment with each connection to ensure connectivity to the nearest

68

node. In the “Discovery and connection to worker” scenario, the procedure outlined in

Figure 3.8 is followed. In the “Connection to cloud’F scenario, the IP address of the

cloud device is known, allowing direct connection to the device.

4.6.3 Evaluation criteria

The metrics used in the evaluation of the FogETex framework are defined as prediction

accuracies, time characteristics, device resource usage, and network bandwidth usage,

consequently.

4.6.3.1 Prediction accuracies

The accuracy of the gait analysis deep learning model was examined in test scenarios

using Cross Entropy Loss function results, F1 Score, and a confusion matrix. In total,

the model was trained for 100 epochs. Cross-entropy results were calculated based

on Equation 4.3. F1 score was used to prevent misleading results depending on the

dataset’s erroneous outcomes, and it was calculated as follows, using precision and

recall:

Precision =
T P

T P+FP
, (4.4)

Recall =
T P

T P+FN
, (4.5)

F1 Score =
2 ·Precision ·Recall
Precision+Recall

. (4.6)

The gait analysis process involves a multiclass classification problem, and when

calculating, the macro F1 score metric was preferred and calculated using the following

equation:

Macro F1 Score =
∑

M
c=1 F1 Scorem

M
, (4.7)

where M is the number of the classes.

To examine the misclassifications of the gait analysis model on the test data in more

detail, the confusion matrix at the end of 100 epochs is presented.

69

4.6.3.2 Time characteristics

The FogETex framework provides real-time computing services, making time

characteristics of utmost importance. Therefore, six time characteristics that are crucial

for clients to connect to the system and receive services have been defined as follows:

Arbitration time: It refers to the duration it takes for a client to find a suitable

worker node and for the worker to prepare the necessary setup for the client. In

these setup processes, the model for the application is loaded, and the necessary

buffers and variables are prepared. After this period, the client can send data to

the system. It encompasses the preparation time for the computing service device,

excluding “Discovery and connection to worker” scenarios.

Latency: It is the time it takes for a client to send data and for that data to enter the

computation queue.

Queuing delay: It is the time that a computation request spends waiting in the queue.

Execution time: It is the total duration during which the incoming computation

request goes through preprocessing and the deep learning modules in sequence.

Total response time: It is the duration from sending the computation request to its

return to the client.

Jitter: It represents the variation in total response time and is calculated by taking its

standard deviation.

4.6.3.3 Device resource usage

This metric is used to monitor resource usage on computing service devices. It

provides CPU and memory usage data for the respective device at one-second intervals.

High resource usage can lead to increased system latency and reduced service capacity

for other users.

70

4.6.3.4 Network bandwidth usage

One of the parameters of fog computing architecture is having low network bandwidth.

Therefore, the total network bandwidth usage data for different device configurations

is provided as an evaluation criterium. Network bandwidth data represents the total of

incoming and outgoing data.

4.6.3.5 Stress test

The system is expected to handle peak loads and dynamic resource demands under

different workloads. In this way, the system’s ability to serve many users can be

analyzed. Each test performed with the mock client was repeated for different numbers

of users. Users were created within the mock client using multithreading.

4.7 Results

In this section, the experimental results of the gait phase recognition system and

the FogETex framework are examined. First, the prediction accuracies of the gait

phase recognition system are reviewed. Since the main focus of this thesis is the fog

computing framework, time performance and resource utilization are more critical than

accuracy results. In next sections, time performance, resource utilization, network

bandwidth usage, stress test, and performance benchmarking results are analyzed.

These results are used to perform a performance analysis of the framework using the

gait phase recognition system.

4.7.1 Results on prediction accuracies

Figure 4.5 shows the decrease in cross-entropy loss as the number of epochs increases.

It was observed that the loss did not change significantly after 80 epochs, and therefore,

the total number of epochs was set to 100. After 100 epochs, the loss value of the model

was calculated to be 0.6.

Figure 4.6 depicts the increase in F1Score as the number of epochs progresses. In

the first 5 epochs, the F1Score exceeds 0.75 and shows a gradually increasing trend.

71

0 20 40 60 80 100
Epoch

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Tr
ai

n
Lo

ss

Figure 4.5 : Model train loss.

After 100 epochs, an F1Score of 0.79 was achieved. Considering that the measurement

frequency of the sensor is 50 Hz, approximately 39 correct predictions per second can

be assumed. Depending on the application of gait analysis, these 39 values can be

combined in various ways to further enhance application performance.

Figure 4.7 illustrates the distribution of predictions made based on real classes. The

toe-off, mid-swing, and heel-off classes achieved an accuracy score of more than 0.84.

However, heel-strike achieved a performance of around 0.64, and it was observed that

approximately 24% of the samples labeled as heel-strike were actually in the heel-off

class, which is the next class label.

4.7.2 Results on time performance

Figure 4.8 provides the mean arbitration times for different scenarios. In Wi-Fi testbed

and using mock client, the allocation time in the “Discovery and connection to worker”

scenario is longer compared to “Connection to worker and broker” scenarios. This is

because of the additional fog node discovery process. The broker node, being more

powerful, allocated the resources in less time than the worker node. In the “Connection

to cloud” scenario, the mock client accesses the cloud node via the Fiber Internet

network, thus this scenario requires a longer allocation time compared to “Connection

72

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

F1
 S

co
re

Figure 4.6 : Macro F1 scores of trained model.

To
e-

of
f

M
id

-s
wi

ng

He
el

-s
tri

ke

He
el

-o
ff

Predicted label

Toe-off

Mid-swing

Heel-strike

Heel-off

Tr
ue

 la
be

l

0.84 0.084 0.013 0.06

0.069 0.86 0.04 0.031

0.024 0.095 0.64 0.24

0.036 0.037 0.092 0.84 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.7 : Confusion matrix of trained model.

73

to worker and broker” scenarios but a shorter allocation time than the scenarios in

the LTE testbed. In the LTE testbed, “Discovery and connection to worker” scenario

follows a process similar to “Discovery and connection to worker” scenario in the

Wi-Fi testbed, first discovering devices. Differently, the connection is established

via the proxy module. Therefore, it has a longer allocation time than “Connection

to cloud” scenario. In the “Connection to cloud” scenario, the mock client connects to

the Internet via a cellular network, thus it has a longer allocation time than the same

scenario in the Wi-Fi testbed.

Disc
ov

ery
 an

d c
on

ne
cti

on

to
work

er
(W

i-Fi
)

Con
ne

cti
on

 to
 work

er

(W
i-Fi

)

Con
ne

cti
on

 to
 br

oke
r

(W
i-Fi

)

Con
ne

cti
on

 to
 clo

ud

(W
i-Fi

)

Disc
ov

ery
 an

d c
on

ne
cti

on

to
work

er
(LT

E)

Con
ne

cti
on

 to
 clo

ud

(LT
E)

0

200

400

600

800

1000

M
ea

n
Ar

bi
tra

tio
n

Ti
m

e
[m

s]

189.8

65.6 41.3

357.9

728.2

577.4

466.8

142.0 131.9

752.4 762.2
695.9

Mock Client
Actual Client

Figure 4.8 : Arbitration time in different scenarios.

When comparing the mean arbitration times of the actual client and the mock client,

there is a slight difference in device performance with the actual client showing slightly

lower performance. However, in all test scenarios, this trend seems to be consistent

with the arbitration time being shorter than 1 second.

Figure 4.9 gives the mean latency in different devices and testbeds. The latency in

worker and broker devices (Wi-Fi) is similar and lower than the rest of the units.

Cloud has higher latency due to its multi-hop connection. However, worker (LTE)

74

Worker
(Wi-Fi)

Broker
(Wi-Fi)

Cloud
(Wi-Fi)

Worker
(LTE)

Cloud
(LTE)

0

20

40

60

80

100

120

M
ea

n
La

te
nc

y
[m

s]

3.0 2.2

25.3 25.1

38.1

8.8 9.4

41.5 40.4

64.6

Mock Client
Actual Client

Figure 4.9 : Latency in different devices and testbeds.

and cloud (Wi-Fi) have similar latency. This is because worker (LTE) involves longer

data transmission times through the air and the use of additional devices like the proxy

module. Due to the impact of the cellular network on data, cloud (LTE) has higher

latency compared to all other cases. When comparing the mock client and the actual

client, the mock client has lower latency, and the latency variation is lower compared

to the actual client.

Figure 4.10 provides the mean queuing delay in different devices and testbeds. The

broker device has the highest queuing delay because it is involved in various tasks such

as proxy and node management. Other devices have substantially lower queuing delays

since they have fewer tasks. In devices connecting via cellular networks, queuing times

are slightly increased due to variations in data arrival times. For instance, cloud (Wi-Fi)

has 1.4 ms mean queuing delay for the actual client, whereas cloud (LTE) has 1.8 ms

for the same client. Similarly, the queuing delays for the mock client are lower than

the queuing delays for actual clients as the mock client sends data more stably.

Figure 4.11 demonstrates the mean execution time in different devices and testbeds. As

expected, the worker device has the highest computation time. The broker device has a

lower execution time than the other devices because it has a more powerful processor.

75

Worker
(Wi-Fi)

Broker
(Wi-Fi)

Cloud
(Wi-Fi)

Worker
(LTE)

Cloud
(LTE)

0

5

10

15

20

25

M
ea

n
Qu

eu
in

g
De

la
y

[m
s]

0.6

8.9

0.6 1.0 0.71.4

9.7

1.4

4.3

1.8

Mock Client
Actual Client

Figure 4.10 : Queuing delay in different devices and testbeds.

The connection types do not have any impact on the execution time. Similarly, the

queuing delays for the mock client and the actual client have approximately the same

execution times.

Figure 4.12 provides the total response time in different devices and testbeds. Worker

devices cause the lowest response time among their respective connection types,

indicating that workers perform their duty both adequately and effectively in the fog

architecture. The broker device also has a shorter response time compared to the cloud

device due to lower network delay. The response time for the actual client is higher

than the response time for the mock client. On average, the lowest total response time

is 10.5 ms for the mock client test and 22.3 ms for the actual client device. The highest

response time belongs to cloud (LTE), which is 131 ms for the actual client.

Figure 4.13 illustrates the variation in jitter, showing that the worker (Wi-Fi) and the

broker (Wi-Fi) have approximately 10 ms of jitter. However, this duration increases

in the LTE testbed. Both worker (LTE) and cloud (LTE) have the same level of jitter.

Considering that high jitter is not a desirable feature, worker devices outperform other

devices as expected. Jitter for the actual client and the mock client have similar values

in different scenarios.

76

Worker
(Wi-Fi)

Broker
(Wi-Fi)

Cloud
(Wi-Fi)

Worker
(LTE)

Cloud
(LTE)

0

1

2

3

4

5

6

7

8

M
ea

n
Ex

ec
ut

io
n

Ti
m

e
[m

s]

4.0

0.7
1.1

3.8

1.2

3.8

0.8
1.1

4.2

1.0

Mock Client
Actual Client

Figure 4.11 : Execution time in different devices and testbeds.

Worker
(Wi-Fi)

Broker
(Wi-Fi)

Cloud
(Wi-Fi)

Worker
(LTE)

Cloud
(LTE)

0

25

50

75

100

125

150

175

200

225

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

10.5 14.4

52.2 54.8

77.9

22.3
29.5

84.6 88.0

131.0

Mock Client
Actual Client

Figure 4.12 : Total response time in different devices and testbeds.

77

Worker
(Wi-Fi)

Broker
(Wi-Fi)

Cloud
(Wi-Fi)

Worker
(LTE)

Cloud
(LTE)

0

5

10

15

20

25

30

Jit
te

r [
m

s]

7.8

10.4

16.4

21.8 21.0

7.9
9.3

17.4

26.4
25.4

Mock Client
Actual Client

Figure 4.13 : Jitter in different devices and testbeds.

4.7.3 Results on resource usage

Figure 4.14 shows the CPU and memory usage results of computing service devices in

different testbeds. The broker device has the lowest CPU usage rate because it has a

powerful system. The proxy module, acting as a data transmitter without performing

calculations, has used less CPU. The cloud device is relatively more powerful than

worker devices and is optimized for computation, so it has lower CPU usage. Despite

being the device with the highest CPU usage, the worker device has a very low value,

around 10%.

The worker device has the lowest memory usage in all testbeds. The cloud device has

slightly higher memory usage because it stores resource data for broker and worker

devices. The broker device shows higher memory usage than expected. This is because

the broker device has the only user interface in the operating system, which increases

memory usage. Overall, memory usage is well below the threshold values set in our

experiments with the FogETex framework.

78

Worker
(Wi-Fi)

Broker
(Wi-Fi)

Cloud
(Wi-Fi)

Proxy
(LTE)

Worker
(LTE)

Cloud
(LTE)

0

5

10

15

20

25

30

M
ea

n
Us

ag
e

[%
]

10.9

1.1

8.0

0.8

10.3
9.1

7.7

26.0

12.4

26.1

7.8

12.5

CPU Usage
Memory Usage

Figure 4.14 : CPU and memory usage in different devices and testbeds.

4.7.4 Results on network bandwidth usage

Figure 4.15 shows network bandwidth usage in different devices and testbeds. The

lowest bandwidth usage is observed in the worker (Wi-Fi). The worker and cloud

devices in the Wi-Fi testbed and LTE testbed show similar bandwidth usage. However,

the broker device has higher bandwidth usage due to its various tasks, such as

transferring resource data from worker devices, fog node assignment, and proxy. The

proxy operation shows even higher bandwidth usage because it performs two-way

message transmission during its task in the LTE testbed.

4.7.5 Stress test

Figure 4.16 shows the average response time of different devices based on the varying

number of users. The error bar in the line graph represents the standard deviation,

indicating jitter. For this application, worker (Wi-Fi) has the lowest average response

time up to 6 users. Similarly, worker (LTE) performs better than cloud (LTE) up to

6 users. The broker shows worse results than worker (Wi-Fi) up to 6 users but can

serve up to 18 users and consistently outperforms the cloud at all user counts. In the

79

Worker
(Wi-Fi)

Broker
(Wi-Fi)

Cloud
(Wi-Fi)

Proxy
(LTE)

Worker
(LTE)

Cloud
(LTE)

0

200

400

600

800

1000

1200

1400

M
ea

n
Ba

nd
wi

dt
h

[k
bp

s]

120.5

627.5

138.8

1223.3

139.7 145.8

Figure 4.15 : Network bandwidth usage in different devices and testbeds.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Users

0

25

50

75

100

125

150

175

200

225

250

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

Worker (Wi-Fi)
Broker (Wi-Fi)
Cloud (Wi-Fi)
Worker (LTE)
Cloud (LTE)

Figure 4.16 : Mean response time in different devices with varying numbers of users.

80

cloud, the system continues to operate successfully up to 14 users. After this point,

jitter increases rapidly, and the system becomes unable to serve more than 16 users

using LTE and 17 users using Wi-Fi.

Although the number of users a single worker can serve is lower compared to other

devices, it is expected that a fog node will contain dozens of workers, depending on

the need. Considering the cost of the devices, the worker is significantly cheaper than

both the broker and the cloud rental costs, making it more advantageous in terms of

price performance.

4.7.6 Performance benchmarking

In this section, we aimed to compare the system’s performance with other studies.

However, due to implementation constraints, many studies have been conducted

through simulations, and many do not adhere to a common standard. As a result,

performance comparisons could only be made with the study HealthFog [262], which

has a similar structure to our work. In fact, several studies, such as Smart VetCare [247]

and FETCH [277], also utilize the FogBus [261] architecture, just like HealthFog.

HealthFog was chosen for comparison because it includes a deep learning module, like

our system, and it is developed in Python, making it the most similar study to ours. Our

gait phase recognition system has been integrated into this study for comparison.

Table 4.2 shows the performance comparison between HealthFog and our study. Our

system outperforms in many metrics, with a significant difference observed particularly

in response time and latency. In our system, the response time for worker, broker, and

Table 4.2 : Comparison performance of FogETex with other works.

Worker Broker Cloud
Metric HF FogETex HF FogETex HF FogETex
Arbitration Time [ms] 82.4 65.6 90.4 41.3 209.9 357.9
Latency [ms] 89.2 3.0 71.7 2.2 93.3 25.3
Queuing Delay [ms] 0.5 0.6 13.8 8.9 0.4 0.6
Execution Time [ms] 4.6 4.0 2.4 0.7 1.3 1.1
Response Time [ms] 101.3 10.5 107.3 14.4 174.2 52.2
Jitter [ms] 8.2 7.8 8.1 10.4 33.0 16.4
Frequency [Hz] 9.9 50.0 9.3 50.0 5.7 50.0

81

cloud is 10.5 ms, 14.4 ms, and 52.2 ms, respectively, whereas in the HealthFog (HF)

study, it is 101.3 ms, 107.3 ms, and 174.2 ms. Due to the structure of the HealthFog

system and its high response time, the maximum operational frequency is 9.9 Hz, while

our system can consistently handle data at a fixed frequency of 50 Hz and respond to

these requests.

4.8 Discussion

The worker device has shown successful performance when looking at characteristics

that affect the user, such as latency, total response time, queuing delay, and jitter. This

demonstrates that fog computing possesses the characteristics it should have inherently.

In the LTE testbed, it has also outperformed the cloud. While it shows slightly worse

results in terms of execution time compared to broker and cloud devices, with more

than one worker in the system, these additional devices will decrease the average

execution time as the number of users increases.

Worker devices have higher CPU usage as they are relatively less powerful devices.

The main goal here is to establish a system with high computational power using

low-cost devices. Similar to execution time, when multiple worker devices are

connected, the total processing power is expected to be higher than that of the broker

and cloud. In terms of memory usage, however, worker devices have shown better

results.

Morover, the worker device has demonstrated the most successful performance in

terms of network bandwidth. Thus, it has shown that fog computing systems possess

many essential features such as low response time, low latency, real-time response, and

low network bandwidth. This confirms that FogETex is an appropriate platform for

e-textile applications relying on machine learning-based computational requirements.

On the other hand, when comparing the mock client and the actual client, the

mock client performed better. In the mock client, data is read from memory and

transmitted to computing devices every 20 ms. The mock client provides an ideal

testing environment for computing devices. However, the actual client showed lower

performance due to several factors, such as being a less powerful device, issues caused

82

by traffic in the data transmitted from the T-IoT device, background applications, and

the load created by the graphical user interface of the mobile application.

4.9 Limitations

The proposed FogETex framework offers low latency, response time, queuing time,

jitter, and resource usage, but it also presents several challenges and limitations such as

distributed system management, security and privacy issues, data consistency, latency

and bandwidth limitations, heterogeneity, energy efficiency, and scalability. While the

distributed architecture is beneficial in terms of latency, it also increases the complexity

of the system, making resource management more difficult and raising maintenance

costs. Since electronic textile products typically handle human-related data, additional

administrative efforts will be required to ensure data security and user privacy within

the distributed fog architecture.

Another challenge is data synchronization and management. Data comes from various

devices, and it is critical that it is transmitted without corruption, as any discrepancies

could lead to incorrect predictions by the system. Although fog computing reduces

latency and network bandwidth usage, Internet infrastructure may not be sufficiently

robust in all areas, necessitating additional enhancements in those regions. The use of

different types of edge devices could lead to software and hardware issues over time.

While the proposed framework is designed to work across various device types and

operating systems, hardware and software changes may require additional effort.

One of the most significant limitations of this study is that the tests are conducted

with a single worker. Although the developed framework supports an unlimited

number of workers, an analysis of different numbers of worker devices in indoor and

outdoor operations and a review of the results are necessary. Based on these results,

system administrators can better determine the required number of devices and their

configurations according to the number of users.

Another limitation is the decrease in battery life and potential issues with data transfer

in T-IoT devices due to daily usage. At this point, the system may experience data

loss. To address this, intermittent computing techniques can be used, allowing the

83

T-IoT device to operate in low-power mode. During this mode, data transfer over

Bluetooth can be interrupted, and the device can switch to data collection mode only.

Once the battery level returns to a non-critical state, the collected data can be sent to

the fog system.

When displaying resource usage in the system, it is more appropriate to normalize

it based on device performance. However, since the system includes devices with

different architectures, normalization using metrics like processor clock count may not

be accurate. Therefore, resource usage had to be presented with their original values

rather than being normalized.

In addition, since the system was tested on real devices, it is more susceptible to

external factors, leading to limitations in performance comparisons. An emulator

system that includes T-IoT devices and gateways could be developed to address this

issue. This way, external factors in the system could be controlled, allowing for more

accurate performance comparisons.

In addition to these, while fog nodes are independent within the system, there is a

limitation of a centralized approach in resource monitoring and fog node assignments.

Fully distributed or federated system architectures could make it easier to manage the

system internally. Although the complexity level would increase, the problem of node

issues affecting each other would decrease.

Using a large number of devices and continuously operating them will increase energy

consumption. Depending on changing needs, there may be limitations in terms of

energy efficiency. Finally, scalability is a key limitation for ensuring the continuity

of services within the system. Although the framework offers dynamic flexibility in

adding devices, physically installing these devices and identifying regional needs for

devices will still be necessary.

4.10 Conclusion

In this thesis, we proposed a novel fog computing-based framework for electronic

textile applications. The FogETex framework challenges the computational load

of low-power microcontrollers commonly used in electronic textile products, thus

84

enabling designers to address concerns about comfort. Since the framework is

developed as the platform as a service model, it can be used not only for e-textile

products but also for other applications that require fog computing architecture. The

framework has been developed using a cross-platform software approach, allowing it

to run on different processors and operating systems. In the infrastructure, computation

services can be sent in sequence through bidirectional peer-to-peer connections using

Web socket connections. For single requests, queries are made through HTTP

RESTful API connections. The framework has been developed using NodeJS for

communication processes and Python for deep learning-based computation services.

A user interface is developed for resource monitoring of devices and tracking the fog

structure.

The system is tested with a real-time and real-world problem using deep learning-based

gait phase analysis, in which textile-based capacitive sensors are used for phase

prediction. The entire system, from the sensor to the fog node and cloud, is

implemented and tested from a holistic perspective. In the framework tests, system

performance in an ideal environment using mock client tests as well as real-world

results using an actual client test with a mobile application were examined. The

time characteristics, resource usage, and network bandwidth usage of the FogETex

architecture were studied in different devices and testbeds. The worker devices in the

FogETex infrastructure have shown low latency, low response time, low queuing time,

low jitter, and low bandwidth usage in different experimental scenarios, demonstrating

that they meet the requirements of fog computing. This system supports a large number

of users and has a lower latency compared to its competitors in the literature.

85

86

5. ASSISTIVE SOFT ROBOTIC GLOVE CONTROL USING FogETex

In this chapter, we present a novel IoT system for remote rehabilitation using FogETex

framework. This system utilizes a sensing Textile-based IoT glove (T-IoT [278]

glove) as the master and a pneumatic actuating T-IoT glove as the slave within a

remote rehabilitation framework. In this study, we also validate the performance

of the closed-loop control system through the cloud computing system. Equipped

with capacitive textile sensors on each finger, the T-IoT glove is paired with a

wireless transmitter incorporating a machine learning-based recognition of the finger

movements of the medical staff. The actuating T-IoT glove mimics the finger motions

captured by the sensors to assist individuals remotely with the required motions.

The sensing T-IoT glove system integrates a Beetle Bluetooth Low Energy (BLE)

for the acquisition of sensor signals and transmitting them to the cloud via the

medical staff’s client program. The cloud system employed signal processing and

machine learning analysis techniques to facilitate comprehensive telerehabilitation,

requiring preprocessing and pattern identification to efficiently control the actuating

T-IoT glove. Cloud services are utilized to boost response time with minimal latency

and fast transmission, as well as to reduce computational load [142,144]. This

entails transferring the healthcare system’s service module to the cloud, assigning

computing resources according to users’ health conditions, and facilitating prompt

interaction through Transmission Control Protocol (TCP) and Internet Protocol (IP).

The computation unit in the cloud performs gesture recognition with a 93.95%

accuracy using Machine Learning (ML) techniques applied to the sensor data from

the sensing T-IoT glove. It generates real-time control commands for the actuating

T-IoT glove. The actuating T-IoT glove replicates the recognized actions, while

computational tasks are efficiently handled by the cloud system, leaving only the

communication tasks to run on edge devices with low computational resources.

87

To our knowledge, no existing system offers hand gesture recognition through a

sensing T-IoT glove and consequent remote control of the actuating T-IoT glove

utilizing machine learning over a cloud computing system all performed in real-time.

We anticipate that combining cloud computing with machine learning-driven signal

analysis will open up fresh opportunities, facilitating distinctive automatic detection,

recognition, and prediction abilities in areas such as healthcare assessments and

home-based rehabilitation.

5.1 System Architecture and Material Designs

The structure of the proposed telerehabilitation system based on cloud computing is

illustrated in Figure 5.1. It comprises three main components: a sensing T-IoT glove

for gesture recognition, an actuating T-IoT glove for rehabilitation, and an intermediate

cloud computing architecture connecting the two gloves.

textile-based
actuator

Actuating T-IoT
Glove

pneumatic
pipes

Human Patient

control box

Cloud

Sensing T-IoT
Glove

IMU

 textile-based
capacitive

sensors

transmitter
module

Medical Staff

a) b)

Data Processing

Figure 5.1 : Telerehabilitation over the cloud with the medical staff wearing a
sensing T-IoT glove and the human patient wearing an actuating T-IoT glove for

telerehabilitation: a) Sensing T-IoT glove, b) Actuating T-IoT glove.

5.1.1 Design of the sensing T-IoT glove

The sensing T-IoT glove consists of five capacitive-based textile sensors that are highly

stretchable, making them fit the human hand. These highly sensitive capacitive sensors

88

consist of two layers of knitted fabric coated with silver nanoparticles (Shieldex

Medtex-130, V Technical Textiles Inc., USA), which are utilized as upper and lower

electrodes. Additionally, a silicon layer (Ecoflex 00-30, SmoothOn Inc., USA) works

as the dielectric material between them.

The change in capacitance in capacitive sensors is typically due to variations in the size

of the sensor and can be utilized for detecting joint movements [278]. Figure 5.1(a)

illustrates the sensing T-IoT glove, its sensors on the fingers, and the transmitter

module on the wrist area. Silicon is cast on a conductive fabric with the desired

thickness according to the required application, which also affects the performance of

the sensor in terms of sensitivity and working range. The manufacturing methodology

of these capacitive sensors, along with their working principle and characterizations

are explained in detail in our previous work [47].

After cutting the electrodes into the desired shapes using a laser cutting machine,

particularly along the sides of the fingers, the silicon was cast. Following the

silicon casting, these layers were merged and left to cure in an oven. Once shaped,

the sensors were carefully positioned over the fingers of the glove. Connections

with the Beetle BLE (DFRobot, Shanghai, China) development board and MPR121

capacitive sensor controller (Adafruit, New York, USA) were established using

Thermoplastic PolyUrethane (TPU) coated conductive yarns. This approach ensures

that the flexibility of the sensing T-IoT glove is not compromised and prevents the yarns

from getting into contact with each other, thus minimizing the risk of short circuits and

reducing parasitic capacitance.

5.1.2 Design of the actuating T-IoT glove

The key components of the proposed actuating Textile-based IoT glove are illustrated

in Figure 5.1(b). The actuating T-IoT glove consists of textile-based knitted actuators

capable of extending and bending upon applied force. The creation of such anisotropy

is made possible by arranging the dorsal and plantar surfaces of the produced shells

of the actuators to lead to localized expansion of fabric and actuator bending motion.

This arrangement of knit loops and courses per centimeter in the computerized knitting

machine (SHIMA SEIKI) controls needle yarn carriers simultaneously to create

89

desired patterns. Another promising advantage of using computerized knitting during

the production of actuators is eliminating the burdensome, time-consuming steps of

producing actuators via the cut-and-sew approach, which requires manual assembly.

The machine we employed allows for controlled mass production and reduces variation

in products caused by manual assembly, meeting the demands of the health sector.

Within these actuators, TPU sheets (Stretchlon 200, Fiber Glast) are utilized to create

flexion and extension air pouches sealed by welding (impulse sealer PCS 300, Brother).

The actuators are then mounted onto a base and worn using Velcro finger cuffs.

Each bladder was manufactured by laser cutting two identical rectangles measuring

17 × 2.5 cm. The pneumatic system has been designed to provide forces to the

actuators that will lead to their inflation, enabling the required action through fingers

that are detected, processed, and conveyed via the sensing T-IoT glove and cloud

computing. Eventually, the actuating T-IoT glove provides safer interactions with

patients, thanks to the inherent lightweight and compliant nature of textile products. As

these components communicate with each other via the Internet using IoT protocols,

it ultimately causes the patient’s hand to close and open during the therapy session.

Detailed information about the material and methodology can be found in [8].

5.2 Data Processing

The proposed system consists of three main components: the sensing T-IoT glove, the

actuating T-IoT glove, and the cloud. Figure 5.2 illustrates the sensor and control

signal transmission architecture of the proposed system. The exercise movements

performed by the medical staff. The sensing T-IoT glove captures the medical staff’s

finger movements via the capacitive sensors and transfers these data to a computer

via Bluetooth, and then to the cloud in real time via the Internet. The cloud system

processes the sensor data from the sensing T-IoT glove using signal processing and

machine learning techniques to generate appropriate control signals for the actuating

T-IoT glove. In addition to computing services, it also establishes a communication

infrastructure for data transfer between the sensing and actuating T-IoT gloves. The

actuating T-IoT glove worn by the patient is responsible for executing the exercise

movements received from the medical staff.

90

Actuating T-IoT Device

Textile-based
Actuators

Control
Box

Computer

Communication
Interface

Patient

Wired
Bluetooth
Internet

Sensor Signal
Air Pipe
UART
Internet

Control Signal

Cloud

Computing
Module

Communication
Module

Sensing T-IoT Device

Textile-based
Capacitive Sensors

Transmitter
Module

Computer

Communication
Interface

Medical Staff

Figure 5.2 : System architecture of sensor and control signals transmission.

5.2.1 Data processing in the sensing T-IoT glove

The sensing T-IoT glove consists of five textile-based capacitive strain sensors and

a transmitter module. The strain sensors are placed on the fingers. Depending on

the movement of the fingers, there is a change in capacitance due to the mechanical

alteration in the length and thickness of the sensor. Because of this mechanical effect,

the capacitance increases when a finger is in a closed position and decreases when it is

in an open position.

The transmitter module consists of a Beetle BLE, an MPR121 capacitive sensor

controller, and a 3.7 V LiPo battery. The MPR121 capacitive sensor controller is used

to measure the capacitance of the textile-based capacitive strain sensors. One end of

each sensor is connected together and attached to the ground of the module, while

the other ends are connected to the electrode inputs. The module charges the sensors

by providing the configured current value to each sensor individually for the assigned

duration. The charge stored in the capacitance sensor is calculated as follows:

Q = I ·T, (5.1)

where Q is the stored charge, I is the assigned current value, and T is the charging

time. The stored charge creates a voltage on the capacitive sensor, which is calculated

as follows:

Q =C ·V, (5.2)

91

where C is the capacitance value of the sensor, and V is the voltage value resulting from

the stored charge. At the end of the charging period, the capacitive sensor controller

measures this voltage value via electrodes accessed through I2C. The values of I and T

are determined during the configuration stage, and since the value of V can be obtained

from the module, the capacitance value of the sensor is calculated as follows:

I ·T =C ·V (5.3)

C =
I ·T
V

(5.4)

The minimum capacitance and supply voltage of the sensors are used to configure the

values of I and T . Using Equation (5.4), I ·T can be determined as follows:

I ·T <Cmin ·Vdd, (5.5)

where Cmin is the minimum capacitance value, and Vdd is the supply voltage of the

capacitive sensor controller. Additionally, the capacitive sensor controller incorporates

a 2-level filter structure to denoise the capacitance measurements.

The Beetle BLE, which is an Arduino-based development board, collects the voltage

values generated by the strain on the sensors in all five fingers at a sampling frequency

of 50 Hz using the I2C protocol. These collected data are transmitted in real-time to a

computer via Bluetooth. In the computer environment, a developed interface receives

the data and transfers it to the cloud via a TCP socket connection established with the

cloud.

5.2.2 Data processing in the cloud architecture

The cloud architecture has two primary tasks: communication and computation. In

the communication task, data from finger sensors sent by medical staff is received

via a socket connection. These data are added to the buffer associated with the user.

Subsequently, through feature extraction, normalization, and machine learning, the raw

sensor data for each finger is transformed into four control states: “Opening”, “Open”,

“Closing”, and “Close”. These control signals are then transmitted in real-time to the

actuating T-IoT glove on the patient site via a socket connection.

The communication module in the cloud serves as a socket server that connects the

patient and the medical staff. Users and medical staff connect to the system using

92

tokens created specifically for them. These tokens contain the role and meeting

information of the users, which is used to match them accordingly. Information from

the medical staff’s sensing T-IoT glove is processed and sent as control signals to the

patient’s actuating T-IoT glove.

Additionally, the communication module transfers sensor data from the medical staff

to the computation module. The computation module can be configured within the

same cloud device or across different cloud devices. To minimize network latency, it

is recommended to have the computation module within the same device.

The computation module is responsible for processing the sensor data transmitted by

the communication module. As soon as a medical staff connects to the system, the

computation module creates an object for the therapy service. This object contains a

buffer for storing real-time data for each finger, calibration parameters specific to the

fingers, and machine learning models. The buffer is used to extract time series features

from the real-time incoming data.

To use machine learning, raw data, as well as the first, second, and third derivatives

of the data for each finger, are extracted. These features are then normalized using a

standard scaler [279]. To determine the parameters of the standard scaler, the medical

staff is expected to perform several consequent grasp movements for calibration when

connected to the system. After this period, the standard deviation (SD) and mean

values of features for each finger are recorded for the standard scaler, and the same

calibration parameters are used throughout the operation.

The extracted features are converted into control signals using pre-trained classification

models for each finger. In this study, models were trained using machine learning

methods such as Logistic Regression (LR), Decision Tree (DT), K-Nearest Neighbors

(KNN), Multilayer Perceptron (MLP), and XG-Boost (XGB). The grid search method

was used for hyperparameter tuning to improve the performance of the models. The

trained models are stored in the cloud and are loaded into their respective objects each

time a new medical staff connects to the system.

The real-time predictions of finger states made by the machine learning models are

transmitted to the communication module, to be further sent to the patient in real

93

time via a socket connection. The use of socket connections in the communication

module establishes a seamless end-to-end data bridge between sensing and actuating

T-IoT devices. This prevents the need to repeatedly establish connections for each

data transmission, as required in systems utilizing SOAP or REST, avoiding repeated

handshaking operations.

Furthermore, the actuating T-IoT glove application does not need to continuously

query the server to check if a control signal has been generated. When a signal is

generated, it is directly transmitted to the device by the server.

5.2.3 Control of the actuating T-IoT glove

The actuating T-IoT glove operates on the principle of fluidic drive. Pressurized air

created by an air pump reaches the bladders through valves. There are two bladders

for each finger. When air is supplied to the upper bladder, the actuator bends; when air

is supplied to the lower bladder, the actuator extends. When pressurized air is given

to one bladder in a finger, the air release valve of the other bladder opens, and the air

inside is expelled due to the pressure created by the inflation of the other bladder. The

working principle and control scheme of the valves are addressed in detail in [8].

The client application on the patient’s computer facilitates the connection between the

cloud and the actuating T-IoT glove. The control signal generated by the cloud is sent

to the patient’s computer. The client application transmits the control signals to the

microcontroller of the actuating T-IoT glove via the serial port. The microcontroller

initiates the task of opening or closing the respective finger whenever there is a change

in the current finger state.

To detect the opening and closing actions of the fingers, the microcontroller is equipped

with a pressure sensor for each bladder. Before starting rehabilitation, the open and

closed positions for each finger are set via the client screen, and the threshold values

for the bladders are determined. When a bladder reaches its threshold value in the

opening or closing state, the movement is considered complete. The microcontroller

controls each finger individually. If multiple fingers are moving simultaneously, the

94

pressure in each finger is controlled separately. If one finger completes its movement,

pressurization for that finger stops while the others continue their movements.

5.3 Experiments

In this section, the test conditions for evaluating the proposed telerehabilitation system

are described. Details about the characterization of T-IoT gloves, data collection and

labeling, demographic information of the test subjects, as well as the experimental

setup, experimental scenarios, and evaluation criteria are provided in detail.

5.3.1 Characterization of T-IoT gloves

In this study, a Sensing T-IoT Glove was used to detect the finger movements of

medical staff, while an Actuating T-IoT Glove was employed to move the patients’

fingers. Unlike previous studies, the characterization of sensors and actuators is

associated with finger motion, since in this study the focus is on finger movement.

During the testing of both gloves, finger movements were detected using a label-based

image processing technique.

In the tests, the index finger was used. Labels were placed on the Distal Phalanx

(DP), Proximal InterPhalangeal joint (PIP), and MetaCarpoPhalangeal joint (MCP) of

the index finger, as well as on the thumb side as shown in Figure 5.3(a). By using

image processing techniques, the positions of these points were determined. The angle

formed by the DP and MCP points at the PIP point was identified and symbolized as

α .

The bending angle of the index finger (β) was defined as the angle of the arc formed

by the bending of the finger (Figure 5.3(b)) and calculated as follows.

β = 360−2×α (5.6)

The bending angle ranges between 0° and 360°. A bending angle of 0° corresponds to a

fully straight finger, also referred to as the “Open” position. An angle of 360° indicates

full flexion or the “Close” position. However, physically achieving a complete 360°

closure is impossible, as it would require the two labels to overlap.

95

α

DP
MCPPIP

α

β
DP

PIP

MCP

a) b)

Figure 5.3 : Label Configuration for Bending Angle Calculation of Finger
Movement: (a) Label Placement on the Index Finger, (b) Bending Arc Representation

of Label Positions.

In the finger bending angle experiments of both sensing and actuating T-IoT gloves, an

8-cycle test was conducted following 4 cycles of preliminary tests, which all involve

consequent flexion and extension movements.

5.3.2 Dataset and labelling

A machine learning-based control technique is applied for controlling the actuating

T-IoT glove using the data from the sensing T-IoT glove. Machine learning is used

to detect the states of the fingers, and the actuating T-IoT glove moves according to

these states. To utilize machine learning techniques, appropriate data collected under

suitable conditions is necessary. In this study, data is collected from 12 test subjects

with an average age of 27.3 years, average anthropometrics hand data [280] of hand

length of 17.1±1.3 cm, and hand breadth of 7.9±0.5 cm. Demographic information

of the test subjects is provided in Table 5.1. Eight of the test subjects are female and

four are male. Excluding the data collected for calibration in the dataset, an average

of 161 minutes of data per finger has been used for machine learning. This study was

approved by the Ethics Committee of Istanbul Technical University Human Medical

and Engineering Research (SM-INAREK-2021-03). Written informed consent was

obtained from all participants prior to data collection.

A procedure for data collection was laid down with medical experts the sensing T-IoT

glove shown in Figure 5.4(a) was worn to the right hand. At the beginning of the test,

subjects were instructed to open and close their hand as shown in Figure 5.4(b) several

96

Table 5.1 : Test Subject Demographic Information

Anthropometrics Hand Data
Test Subject Age Sex Height

(cm)
Weight

(kg)
Hand Length

(cm)
Hand Breadth

(cm)
1 32 Male 172 92 19.2 8.7
2 25 Female 157 53 15.4 7.5
3 28 Female 167 50 17.5 7.5
4 31 Male 173 70 18.0 8.5
5 26 Female 164 55 18.5 8.0
6 31 Female 161 60 15.0 7.5
7 22 Male 181 67 17.0 8.5
8 22 Male 183 62 17.0 8.0
9 23 Female 167 69 18.0 8.5
10 40 Female 168 65 17.0 7.0
11 21 Female 163 69 16.0 8.0
12 27 Female 158 51 16.0 7.5

Average 27.3 F: 8 167.8 63.6 17.1 7.9
SD 5.5 M:4 8.2 11.5 1.3 0.5

times. This data was used for the calibration of normalization parameters specific to

each test subject. All data, including calibration data, was saved into separate files

during experiments.

After the calibration stage, subjects were asked to perform different movements.

The experimenter shows the movement to the test subject at the beginning of each

new movement. After the experimenter confirms that the test subject has correctly

performed the movement, the recording of the test is initiated. Each movement was

repeated sequentially 30 times. Subjects were instructed to wait around one second

in the “Close” and “Open” states of the movements. They were allowed to perform

movements at any speed they favored. During the movements, subjects were also

asked to label active fingers using buttons. A five-second break was given to the subject

before each new movement.

First, the test subjects performed a fist gesture, fully opening and closing the hand

as depicted in Figure 5.4(b). Afterwards, they individually opened and closed each

finger, as shown in Figure 5.4(c). Following them, they opened the thumb while

closing and opening the other four fingers 30 times (Figure 5.4(d.I)). Finally, they

97

c)

d)

Close Open

M�ddle finger

Index finger

R�ng finger

P�nky

Thumb b)a)

Sens�ng T-IoT

Sens�ng T-IoT
 Glove

I II III IV V

I II III IV V

Figure 5.4 : a) Sensing T-IoT glove and its fingers. b) Sensing T-IoT glove calibration
and fist movement: open hand and close hand. c) Single finger closing and opening: I.
Thumb, II. Index, III. Middle, IV. Ring, V. Pinkie. d) Motions with a combination of
fingers closing and opening: I. Open thumb and other fingers close, II. Cylindrical

pinch with thumb and index, III. Cylindrical pinch with thumb and middle, IV.
Cylindrical pinch with thumb and ring, V. Cylindrical pinch with thumb and pinkie.

sequentially touched the rest of the fingers with the thumb in cylindrical pinch

movements, completing the data collection process as shown in Figure 5.4(d.II-V).

The gestures performed by the sensing T-IoT glove and their corresponding gestures

executed by the actuating T-IoT glove are depicted in Figure 5.5. Figure 5.5(a,b)

presents the “Open” and “Close” states of the T-IoT gloves, which are critical for

grasping and releasing motions. Figure 5.5(c,d) illustrates the necessary individual

finger movements essential for single-finger exercises.

A GUI is designed for the experimenter as shown in Figure 5.6. This GUI is organized

into several rows and columns, each displaying specific information and controls. In

the first row, instantaneous analog values from the finger capacitive sensors are shown.

The second row contains five columns: the first three columns display the X, Y, and

Z gyroscope values of the glove, which are used to calculate its orientation, although

these values are not utilized in this study. The fourth column in this row indicates the

98

c)

d)

Close Open b)a)

I II III IV V

I II III IV V

Close Open

Figure 5.5 : a) Sensing T-IoT glove calibration and fist movement: open hand and
close hand. b) Actuating T-IoT glove calibration and fist movement: open hand and
close hand. c) Sensing T-IoT Glove single finger closing and opening: I. Thumb, II.

Index, III. Middle, IV. Ring, V. Pinkie. d) Actuating T-IoT Glove single finger closing
and opening: I. Thumb, II. Index, III. Middle, IV. Ring, V. Pinkie.

Figure 5.6 : Experimenter Graphical User Interface of the Sensing T-IoT Glove Data
Acquisition and Labelling System.

99

cycle count of the current test, incrementing each time the state changes from “Open”

to “Closing”. The fifth column shows the duration of the test.

The third row illustrates the active or moving status of the test fingers—Thumb, Index,

Middle, Ring, and Pinkie—using green to represent active fingers and white for passive

ones, arranged according to the test name. Finally, the fifth row is dedicated to test

operations, featuring the test name on the left, the Test Start Button in the middle, and

the Test Stop Button on the right.

Data from the glove is received in real-time through a Bluetooth module connected to

the computer. The GUI communicates with this module via the Serial Port. Although

data from the glove is sampled at a frequency of 50 Hz, the GUI updates the displayed

data at a screen refresh rate of 10 Hz to improve performance and ensure the changes

can be effectively tracked. The test subject’s name is entered through a configuration

file. The test is performed by the subject is selected from the “test name” combo box,

and active fingers are automatically chosen based on the selected test. The filename for

each test is automatically generated according to the selected test name. Data collected

during the tests is temporarily stored in a buffer and written to the file in bulk every 5

seconds.

Additionally, in the developed Web interface, sensor data from the 5 fingers and the

user’s labels are displayed in real-time (Figure 5.7). The GUI sends the data it receives

from the Bluetooth module in real-time to the web interface via WebSocket. The

client program of the web interface instantly transfers the incoming data to charts.

The experimenter monitors the data collection process, identifies any issues, and notes

errors. After the experiments, the collected data are labeled manually as “Opening”,

“Open”, “Closing”, and “Close”.

5.3.3 Experimental setup

In the proposed system, real-time data from the sensing T-IoT glove worn by the

medical staff is converted into control signals for the actuating T-IoT glove worn by the

patient. This setup provides telerehabilitation infrastructure for medical staff-patient

interactions at separate locations.

100

Figure 5.7 : T-IoT Glove Finger Sensor Virtualization Interface.

Performance testing of the developed system utilized a traffic generator and cloud

devices as follows.

1 Traffic generator and receiver: Dell Inspiron 15 5000 (Intel Core i7-8550U CPU
@1.80GHz, 32GB DDR4 RAM, 240GB SSD, and Windows 11 Enterprise 64-bit).
Software: Node.js v18.15.0 and Python 3.9.13.

2 Cloud device: Digital Ocean VPS (2x Dedicated Premium Intel CPU, 8GB RAM,
50GB SSD, Cloud Location: Frankfurt/Germany).

Traffic generator and receiver 1 replicates the clients of the sensing and actuating

T-IoT gloves. To prevent synchronization issues that may arise from using different

devices, tests were conducted solely on one traffic generator.

Cloud device 2 provides computational services and communication infrastructure to

IoT devices. It processes sensor data coming from the medical staff’s application,

converts it into control signals, and then sends the processed data to the patient’s

application. In this way, it acts as a bridge between the patient and the medical staff.

During the experiments, both applications are initiated simultaneously and connected

to the cloud. At this stage, the medical staff’s application informs the cloud about the

machine learning model it intends to use during the connection. The cloud application

loads the registered model, creates necessary buffers for sensor data, and generates

objects associated with them.

101

After the preparations are completed the medical staff’s application receives a

notification. Subsequently, the medical staff’s application starts to send the previously

recorded data sampled at a frequency of 50 Hz. This procedure is repeated similarly

for 11 different movements for each test subject. Tests for all machine learning models

are repeated using the same procedure. The reason for using recorded data in the

performance tests of the proposed system is to ensure that the tests for all models are

conducted under the same conditions.

For the evaluation of machine learning performance, the data was randomly split into

75% training and 25% testing sets. The same training and testing sets were used across

all machine learning models. Hyperparameter tuning was performed using the grid

search method. The parameters of the classifiers are given in Table 5.2, and the rest of

the parameters are set as default.

Table 5.2 : Model Parameters of The Classifiers.

Classifier Parameter Value
LR Inverse of regularization strength 100
DT Minimum samples required to split as internal node 8
KNN Number of neighbors 20
MLP Activation function for the hidden layer tanh
RF The number of trees in the forest 20

XGB
Number of gradient boosted trees 25
Maximum tree depth for base learners 18

5.3.4 Evaluation criteria

Accuracy analysis has been conducted for the performance of the T-IoT devices

and trained models. Criteria such as time characteristics, cloud assessing resource

usage, and network bandwidth usage have been used to examine the performance

of the cloud computing and communication modules. The definitions for the time

characteristics are provided in Section 4.6.3.2, resource usage in Section 4.6.3.3, and

network bandwidth usage in Section 4.6.3.4.

102

5.3.4.1 Accuracy criteria

Accuracy, recall, precision, and F1 score metrics were used to evaluate the performance

of the trained models in this study. The following equation was used for calculating

accuracy:

accuracy(y, ŷ) =
1
N

N

∑
i=0

1(ŷi = yi), (5.7)

where yi is actual label of the i-th sample, ŷi is predicted label of the i-th sample, N is

sample numbers.

The recall, precision, and F1 score metrics were calculated as follows:

Pc =
T Pc

T Pc +FPc
, (5.8)

Rc =
T Pc

FNc +T Pc
, (5.9)

F1c =
Pc ·Rc

Pc +Rc
, (5.10)

where Pc is precision score for class c, Rc is recall score for class c, and F1c is F1 score

for class c. T Pc is true positive prediction of class c, FPc is false positive prediction of

class c, and FNc is false negative prediction of class c. The final scores for precision,

recall, and F1-score, as well as the average performance of all models, were calculated

using the macro-average method as follows:

MacroScore =
∑

M
c=0 Scorec

M
, (5.11)

where Scorec is the score of the c-th class and M is the number of the classes.

5.4 Results

In the first two sections, the performance of the sensing T-IoT glove and the actuating

T-IoT glove with respect to bending angle is examined. Then, the performance

analysis of the sensing T-IoT glove was conducted by examining the accuracy of

models trained using different machine-learning methods on the created dataset.

Subsequently, the trained models were integrated into the cloud, and their end-to-end

operational performance was evaluated. In these tests, parameters such as time

103

performance, resource usage, and network bandwidth usage were examined to analyze

the impact of different machine learning models on cloud computing. Additionally,

using the FogETex framework, various concurrency, and inter-process communication

techniques were tested on the worker device. Furthermore, a multi-worker structure

was also tested with this application.

5.4.1 Characterization of sensing T-IoT gloves

In this test, the test subject was asked to open and close their finger at different speeds.

The average closing time of the finger was 1.54 seconds, while the opening took 1.88

seconds in average. Including the average waiting times between each cycle, one

complete cycle lasted approximately 6.06 seconds.

The bending angle-capacitance graph for the index finger of the Sensing T-IoT Glove is

shown in Figure 5.8. While the angle values range from 0.1° to 240.4°, the capacitance

values vary between 147.6 pF and 160.1 pF. The closing movement produced a more

0 50 100 150 200 250
Bending Angle [°]

146

148

150

152

154

156

158

160

162

Ca
pa

cit
an

ce
 [p

F]

Closing Movement
Opening Movement

Figure 5.8 : Capacitance Change of Textile-based Sensor During Index Finger
Movement.

104

linear result, whereas the opening movement resulted in a more curved pattern and

had lower capacitance values compared to the closing movement. This discrepancy is

thought to be due to the recovery behavior of the textile structure.

5.4.2 Characterization of actuating T-IoT gloves

In this test, the test subject holds his/her finger without applying any force, and the

flexion bladder is pressurized up to 150 kPa for the flexion movement, while the

extension bladder is used during the extension movement. When one bladder is

pressurized, the exhaust valve of the other bladder is opened, allowing air to escape

into the atmosphere.

The flexion movement took an average of 5.92 seconds, while the extension movement

lasted 3.45 seconds. A waiting time of 1 second was applied between movements,

resulting in an average cycle duration of 11.37 seconds. The actuator was operated

slower than the sensing glove to minimize the risk of potential harm to the patient

whereas the system is capable of operating at a faster rate.

Figure 5.9 shows the angle change of the index finger in response to pressure applied

by the Actuating T-IoT Glove. The shared pressure data pertains to the flexion bladder,

which is directly related to the flexion movement. The results show that the flexion

movement exhibited a more linear response to the applied pressure, while the extension

movement responded more slowly to pressure reduction. The pressure values ranged

from 102.8 kPa (approximately atmospheric pressure) to 150.0 kPa. Correspondingly,

the angle values varied between 32.8° and 185.0°. It was observed that the finger’s

bending and extension movements had a slightly smaller range compared to a healthy

person. This limitation is expected, as the Actuating T-IoT Glove contains exoskeletal

actuators, which naturally restrict movement to some extent.

5.4.3 Results on accuracy

For the control of the actuating T-IoT glove, data was collected from 12 test subjects

using the sensing T-IoT glove, with approximately 161 minutes of data for each

finger. During data collection, the test subjects labeled the data as “Opening”, “Open”,

“Closing”, and “Close”. The dataset collected from test subjects is divided into training

105

100 110 120 130 140 150
Pressure [kPa]

20

40

60

80

100

120

140

160

180

200
Be

nd
in

g
An

gl
e

[°
]

Flexion Movement
Extension Movement

Figure 5.9 : Change of Index Finger Bending Angle During Flexion and Extension
Movement of Textile-based Actuator.

(75%) and test (25%) sets. Separate models were trained for each finger using different

machine learning methods. Table 5.3 presents the results of different machine learning

methods trained for each finger based on the F1 score metric. Table 5.4 shows the

average scores of the machine learning methods for all fingers.

When the scores of models trained with different machine learning methods were

examined, the Random Forest (RF) method emerged as the most successful across

all fingers. The RF models achieved a performance of 91.53 on the thumb and above

94.50 on the other fingers. The lower performance on the thumb is thought to be due to

the thumb traveling a shorter distance than other fingers while closing, those moving

more quickly, especially in actions involving multiple fingers moving simultaneously.

When compared with other methods based on F1 score, the XGBoost (XGB) and

Decision Tree (DT) models achieved performances close to that of the RF models,

with differences of 0.10% for XGB and 0.50% for DT. K-Nearest Neighbors (KNN)

showed a 1.77% lower performance, Multi-layer Perceptron (MLP) showed a 4.45%

lower performance, and Logistic Regression (LR) showed a 7.32% lower performance.

106

Table 5.3 : F1 Scores of Individual Finger Models

Classifier Thumb Index Middle Ring Pinkie

LR 79.05 87.97 89.45 88.66 88.01
DT 90.90 94.13 94.06 94.09 94.08
KNN 88.38 92.43 92.57 92.56 92.48
MLP 83.63 90.67 91.50 91.02 90.69
RF 91.53 94.56 94.51 94.52 94.64
XGB 91.36 94.39 94.46 94.43 94.60

Table 5.4 : Average Performance of All Models

Classifier Accuracy Recall Precision F1Score

LR 87.32 85.89 87.65 86.63
DT 93.93 93.49 93.42 93.45
KNN 92.24 91.86 91.52 91.68
MLP 90.01 89.62 89.43 89.50
RF 94.40 93.93 93.98 93.95
XGB 94.30 93.85 93.85 93.85

It was observed that tree-based models are more successful in solving the problem with

the collected dataset.

Figure 5.10 shows the confusion matrices for the most successful model results, which

belong to the RF models. Figures 5.10(a)-(e) present the confusion matrices for models

trained separately for each finger. Figure 5.10(f) provides the combined results of

models trained for each finger using the RF method. The confusion matrices for models

trained using other classifiers are provided in Figures A.1-A.5 (Appendix B). When the

confusion matrices are examined, it is evident that the majority of the data, as expected,

lies on the diagonal of the matrices. The mispredictions are generally concentrated in

states that transition into each other. In the dataset, the states progress cyclically as

“Open”, “Closing”, “Close”, “Opening”, and “Open”. Given that transitions between

states posed similar challenges during human labeling, it is understandable that the

models also struggle with these predictions. Misclassifications are minimal for labels

with distinct states in between, such as “Closing” to “Opening” or “Open” to “Close”.

107

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

25941 1710 4 712

1797 51089 1234 262

10 2241 24406 1585

665 604 1777 45518
10000

20000

30000

40000

50000

(a) Thumb Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18710 862 1 392

885 37620 676 1

0 659 18839 890

409 0 868 31894

0

5000

10000

15000

20000

25000

30000

35000

(b) Index Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

19024 854 0 452

927 36471 642 1

0 621 19119 819

412 0 952 30914

0

5000

10000

15000

20000

25000

30000

35000

(c) Middle Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18515 917 0 388

884 37241 719 1

0 689 18482 793

391 0 810 30676

0

5000

10000

15000

20000

25000

30000

35000

(d) Ring Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18376 836 0 481

860 37411 637 0

0 632 18208 796

364 0 834 31459

0

5000

10000

15000

20000

25000

30000

35000

(e) Pinkie Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

100566 5179 5 2425

5353 199832 3908 265

10 4842 99054 4883

2241 604 5241 170461 25000

50000

75000

100000

125000

150000

175000

(f) Overall Results.

Figure 5.10 : Confusion Matrices of Random Forest Classifier for Different Fingers.

108

5.4.4 Results on time performance

The developed cloud system provides real-time computation and data communication

between medical staff and their patients. Therefore, the timing performance of the

system is of significant importance. To measure the system’s timing performance, the

following metrics were used: arbitration time, latency, queuing delay, execution time,

jitter, and total response time.

Figure 5.11 shows the preparation time of the system for different classifiers when

a medical staff initiates a therapy request. The models for the classifiers are trained

and saved to the system’s computing module when it is first started. When a new

medical staff starts a session, the saved model is loaded, and the necessary preliminary

preparations for signal processing and feature extraction are made. Once these

preparations are completed, the system notifies the medical staff and the patient that it

is ready through the client program.

In the system, except for the type of trained model, all procedures such as signal

processing and feature extraction are the same for all models. Therefore, classifiers

with larger model sizes have longer arbitration times due to the length of file reading

LR DT kNN MLP RF XGB
0

200

400

600

800

1000

M
ea

n
Ar

bi
tra

tio
n

Ti
m

e
[m

s] 666.4 667.8 689.2 663.1

779.6

885.1

Figure 5.11 : Arbitration time for different classifiers.

109

operations. The lowest average arbitration time was observed in tests using MLP

at 613.1 ms, while the highest was observed using XGB at 885.1 ms. Models

with multiple tree structures also had high arbitration times. Additionally, the

system prepared with kNN showed high arbitration times because, instead of using

a mathematical equation, the entire training set is loaded, and predictions are made

based on the proximity to the training elements. When examining the results, even the

longest time is under one second, so the arbitration times for all models are quite low.

When a medical staff connects to the system, he/she can start receiving computation

services from their dedicated system within one second.

Figure 5.12 shows the latency scores for therapies using different classifiers. The

lowest average latencies are from KNN and LR, with scores of 23.0 ms and 23.3 ms,

respectively. The other classifiers have latencies above 23.5 ms. Although the other

models have slightly worse results, they can still send their data to the computation

module with a delay of up to 25 ms.

LR DT kNN MLP RF XGB
0

5

10

15

20

25

30

M
ea

n
La

te
nc

y
[m

s]

23.3 23.8 23.0 23.7 23.9 24.1

Figure 5.12 : Latency for different classifiers.

Figure 5.13 presents the average queuing delays for therapies using different classifiers.

All models have very low and similar queuing delays of 0.2 ms, starting the data

processing promptly.

110

LR DT kNN MLP RF XGB
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Qu

eu
in

g
De

la
y

[m
s] 0.2 0.2

0.2
0.2

0.2
0.2

Figure 5.13 : Queuing delay for different classifiers.

Figure 5.14 shows the time taken to process incoming sensor data and make state

predictions for each finger. The lower the execution time, the more therapies the system

can handle simultaneously. Therefore, execution time is one of the most important

metrics for the system. According to the results, LR and DT therapies have the lowest

execution time with scores of 0.9 and 1.0 ms, respectively.

Figure 5.15 displays the average response times for therapies using different classifiers.

The best scores are similar to previous results, with LR and DT models achieving 47.5

ms and 48.4 ms, respectively. The highest response times are observed with kNN,

RF, and XGB. Overall, all models have an average delay of around 50 ms, which

means they can provide real-time services. However, for faster response times, it is

recommended to use models trained with LR and DT methods.

Figure 5.16 illustrates the jitter, or the variation in response time, for models trained

with different classifiers. The lowest jitter is observed in models trained with LR at

2.0 ms, followed by DT and KNN at 2.3 ms. The highest jitter is seen in models

trained with RF and XGB at 3.0 ms. High jitter can negatively affect synchronization

between commands, potentially causing therapeutic movements to be shorter or longer

111

LR DT kNN MLP RF XGB
0

1

2

3

4

5

6

7
M

ea
n

Ex
ec

ut
io

n
Ti

m
e

[m
s]

0.9 1.0

4.1

1.3

4.7

4.0

Figure 5.14 : Execution time for different classifiers.

LR DT kNN MLP RF XGB
0

10

20

30

40

50

60

70

M
ea

n
Re

sp
on

se
 T

im
e

[m
s] 47.5 48.4 50.2 48.6

52.6 52.4

Figure 5.15 : Total response time for different classifiers.

112

LR DT kNN MLP RF XGB
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Jit
te

r [
m

s]

2.0

2.3 2.3 2.4

3.0 3.0

Figure 5.16 : Jitter for different classifiers.

than intended. However, since the obtained jitter values are relatively short compared

to hand movements, they can be considered negligible.

5.4.5 Results on resource usage

In computational systems, resource utilization directly affects various time metrics

such as response time, queuing delay, and execution time. The higher the resource

usage, the longer the system will take to respond to new processes. Additionally, lower

CPU consumption indicates that the system can serve more users and also results in

lower cloud costs.

Figure 5.17 shows the resource consumption during therapy for models developed with

different classifiers. The lowest CPU usage is observed with LR and DT models at

6.9% and 7.0%, respectively. For memory usage, the lowest values for LR and MLP

are both 8.4%, while DT has a slightly higher minimum at 8.8%. The highest CPU

usage is 20.8% and the highest memory usage is 14.2%, both for XGB. Given the

lower CPU and RAM usage, models trained with LR, DT, and MLP are recommended

as they can serve more users and are more cost-effective.

113

LR DT kNN MLP RF XGB
0

5

10

15

20

25

30

M
ea

n
Us

ag
e

[%
]

6.9 7.0

13.8

7.6

15.3

20.8

8.4 8.8

11.1

8.4

13.0
14.2

CPU Usage
Memory Usage

Figure 5.17 : CPU and memory usage for different classifiers.

5.4.6 Results on network bandwidth usage

Network bandwidth usage affects network traffic and can negatively impact network

latency. However, in this study, since the incoming and outgoing data are the same

for each model, similar network bandwidth usage is expected. Figure 5.18 shows the

network bandwidth usage during therapy for models trained with different classifiers.

The lowest value is 138.9 kbps for models trained with XGB, while the highest value is

140.7 kbps for models trained with RF. The difference between the lowest and highest

values is observed to be 1.30%, with similar values across all models. Considering that

cloud system network infrastructures operate at Gbps levels, the network bandwidth

usage obtained is quite low.

5.4.7 Results on concurrency control techniques

In this section, the concurrency control techniques explained in Section 3.4 were

utilized to enhance the performance of the FogETex framework. The studies in

this section were conducted using the mock client in the Wi-Fi Test Bed provided

in Section 4.6.1. Each result was obtained through six repetitions, each containing

114

LR DT kNN MLP RF XGB
0

20

40

60

80

100

120

140

160

M
ea

n
Ba

nd
wi

dt
h

[k
bp

s]

139.1 139.9 140.2 139.4 140.7 138.9

Figure 5.18 : Network bandwidth for different classifiers.

identical data for a total duration of 3 minutes. The model used in the tests was

developed with the decision tree method, which demonstrated enhanced accuracy,

resource usage, execution time, and response time compared to others. The limit of

how many users the devices can serve is defined as the maximum number of users

that maintain an average latency of 50 ms or less for worker devices and 80 ms or

less for cloud devices. Beyond these average response time values, the devices fail to

provide real-time service, and it has been observed that the response time continuously

increases with successive requests.

Figure 5.19 presents the mean response time of the worker device using the

multi-threaded data processing method. The WebSocket IPC method was employed

as the IPC mechanism. In this test, stress tests were conducted with up to 6 threads

to determine the optimal number of threads. The number 6 was chosen because the

processor of the worker device has 4 cores, and using a number slightly above the core

count allows for more comprehensive stress testing. The configuration with a single

thread also served as the single-threaded data processing method.

The tests showed that the single-thread configuration delivered the highest

performance and could serve up to 5 users. While other configurations could serve

115

1 2 3 4 5 6
Number of Users

0

10

20

30

40

50

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

1 Thread
2 Thread
3 Thread
4 Thread
5 Thread
6 Thread

Figure 5.19 : Stress test results of multi-threaded data processing via WebSocket IPC.

up to 4 users, the 2-thread configuration demonstrated the lowest response time.

However, the multi-threaded structure performed worse due to the Global Interpreter

Lock (GIL) mechanism in Python. Since other processor cores were not actively

utilized, increasing the number of threads limited performance.

Figure 5.20 presents the mean response time of the worker device using the

multi-process data processing method. Similar to the multi-threaded data processing

method, the WebSocket IPC method was employed in this test. Here, different

configurations with up to 6 processes were evaluated, as the worker device’s 4-core

processor guided the choice of a slightly higher count. Since the single-process

configuration uses the same method as the single-threaded configuration from the

previous test, the same result was used.

While the single-process configuration could serve up to 5 users, the multi-process

configurations were capable of serving up to 6 users. Although the results were fairly

similar, the 2-process and 3-process configurations performed worse compared to the

4-process and 5-process configurations. When the number of processes was increased

to 6, performance slightly decreased. The 4-process setup demonstrated marginally

better results with a lower response time than 5-process communication. This indicates

116

1 2 3 4 5 6 7
Number of Users

0

10

20

30

40

50

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

1 Process
2 Process
3 Process
4 Process
5 Process
6 Process

Figure 5.20 : Stress test results of multi-process data processing via WebSocket IPC.

that the 4-process configuration effectively utilized all the cores of the worker device’s

4-core processor, leading to improved performance.

Figure 5.21 shows the mean response time of the stress test conducted using a

RESTful API for inter-process communication between the socket server and the

computation module. Since the multi-process concurrency method demonstrated

better performance than the multi-threaded method, this test was conducted using

multi-process operations. Each computation process included its own RESTful server.

In the tests conducted with up to 6 users, it was observed that the single-process

configuration could serve up to 3 users, while the other configurations were capable

of serving up to 4 users. Among these, the 4-process configuration exhibited the best

performance compared to the others.

Figure 5.22 presents the results of the multi-process stress test conducted using FIFO,

another IPC method. In this test, an input and an output FIFO were created for each

process. The test results indicate that the 2-process configuration outperformed the

single-process configuration. However, increasing the number of processes beyond 2

negatively impacted performance. The single-process configuration was able to serve

up to 8 users, while the 2-process configuration could serve up to 10 users.

117

1 2 3 4 5
Number of Users

0

10

20

30

40

50
M

ea
n

Re
sp

on
se

 T
im

e
[m

s]
1 Proces
2 Proces
3 Proces
4 Proces
5 Proces
6 Proces

Figure 5.21 : Stress test results of multi-process data processing via RESTful IPC.

1 2 3 4 5 6 7 8 9 10 11
Number of Users

0

10

20

30

40

50

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

1 Proces
2 Proces
3 Proces
4 Proces
5 Proces
6 Proces

Figure 5.22 : Stress test results of multi-process data processing via FIFO IPC.

118

Figure 5.23 compares the best configurations of the different concurrency and IPC

methods proposed for the FogETex framework. A 2-thread configuration was selected

for the multi-thread concurrency method. For the multi-process concurrency method,

4 processes were chosen for both WebSocket and RESTful methods, while 2 processes

were selected for the FIFO method. The test results indicate that the RESTful and

multi-thread methods can serve up to 4 users. The single-thread method can handle

up to 5 users, and the multi-process method can support up to 6 users. Among all, the

FIFO IPC method demonstrated the highest capacity, serving up to 10 users.

1 2 3 4 5 6 7 8 9 10 11
Number of Users

0

10

20

30

40

50

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

Single-Thread
Multi-Thread
Multi-Process
RESTFul API
FIFO

Figure 5.23 : Performance comparison of various concurrency control techniques.

Figure 5.24 presents the stress test results for a fog node with multiple workers. In this

test, the 2-process configuration using the FIFO IPC method, which demonstrated the

best performance in the previous test, was employed. The results show that, based on

mean response time, a fog node with 1 worker can serve up to 10 users, 2 workers can

handle up to 22 users, and a system with 3 workers can serve up to 26 users. It was

observed that the cloud system could serve up to 23 users. Therefore, to build a system

with performance comparable to the cloud, it was determined that at least a 3-worker

fog node is required.

119

1 4 7 10 13 16 19 22 25 28
Number of Users

0

20

40

60

80

100

120

M
ea

n
Re

sp
on

se
 T

im
e

[m
s]

1 Worker
2 Worker
3 Worker
Cloud

Figure 5.24 : Performance comparison of multi-worker and cloud.

5.4.8 Discussion

When examining the results of the developed system and trained models, RF is

observed to be the most successful in terms of accuracy. However, it performs poorly

in metrics such as arbitration time, latency, execution time, total response time, jitter,

and CPU and Memory usage. Models trained with LR and DT methods have shown

significantly better results in these metrics compared to RF, particularly in CPU usage,

where they consume about half as many resources. It is estimated that a system using

these methods could potentially serve approximately twice as many users as one using

RF.

However, when examining the test results in terms of accuracy, there is a 7.32%

difference in F1 score between models trained with LR and those trained with RF.

This significant difference in prediction performance makes LR-trained models less

preferable compared to RF-trained models. On the other hand, models trained with DT

show only a 0.50% difference in F1 score and overall scores compared to RF models.

Thus, by sacrificing just 0.50% in accuracy, the system can achieve lower response

120

times and reduced resource consumption, which allows for serving more users and

lowering resource costs as a trade-off.

Upon examining the accuracy scores of the proposed system, an F1 score of 93.95

was observed. The reasons for mispredictions in the system include the inability of

machine learning methods to fully distinguish transitions between states, variations in

the anthropometric hand data of test subjects, and hand tremors during movements.

The lower accuracy score for the thumb, compared to other fingers, is attributed to its

shorter movement distance, leading to less variation in sensor data.

In the system’s use for therapy, it is anticipated that medical staff will observe

the patient’s hand movements in real-time through a third-party video conferencing

system. Since the proposed system is not intended for use in critical scenarios such as

surgery, it can be argued that the system is more tolerant of trade-offs between latency

and accuracy.

5.5 Conclusion

This study has demonstrated the efficacy of a telerehabilitation strategy by utilizing

cloud computing-based IoT devices such as textile-based sensing and actuating gloves

for patients with hand impairments. The system developed is introduced into the field

of remote healthcare to complement conventional therapy, aiming to overcome location

hindrances, thereby enabling continuous improvement regardless of location.

The application of advanced machine learning algorithms for interpreting real-time

hand movements, captured by the sensing T-IoT glove and processed via cloud

technology, enables the control of the actuating T-IoT glove. The proposed system

performed an average response time of 48.4 milliseconds and an average accuracy of

93.45%.

This study demonstrates that the FogETex framework has been successful in

multi-sensor applications. Additionally, as each developed model is integrated into

the system as a separate application, the framework has shown the capability to host

and run multiple applications simultaneously. Although the FogETex framework was

primarily designed for fog computing, its cross-platform support and the ability of

121

all nodes to provide services enable it to operate using only cloud resources, as

exemplified in these applications.

On the other hand, the fog system was tested with different concurrency and IPC

methods for this application. The multi-process concurrency method, combined with

the FIFO IPC technique, demonstrated the best performance. It was observed that the

system could serve up to 10 users with 1 worker, 22 users with 2 workers, 26 users

with 3 workers, and 23 users in the cloud configuration.

Since our aim was to eliminate injury risks that might occur during conventional

robotic therapy applications, due to the lightweight, soft attributes of textile materials,

the system provides compliant and safe interactions. We believe that our approach

will enhance the outcomes of hand therapy aimed at restoring neuromuscular function,

thereby increasing the quality of life for people. Moreover, the system architecture

developed for cloud computing can be implemented not only in IoT systems for

rehabilitation but also in other applications such as remote medical surgeries or

virtual/augmented reality applications.

122

6. CONCLUSION

In this thesis, a fog computing-based framework for e-textile applications, named

FogETex, is proposed. The FogETex framework is designed to meet the computational

requirements of low-power microcontrollers used in e-textile products, addressing

concerns related to comfort. The framework is tailored to meet the needs of

e-textile applications, enabling both indoor and outdoor operations. This allows T-IoT

devices to operate without mobility restrictions. A WebSocket connection is used

for bidirectional communication between the worker and user, enabling the transfer

of tens of data points per second without the need for a new connection. Single

requests, such as device allocation, are managed via HTTP RESTful API connections.

The framework has been developed using NodeJS for communication operations

and Python for data preprocessing and machine learning services. Additionally, the

developed user interface allows system administrators to monitor devices in real-time.

Although this thesis is primarily based on a fog computing architecture, many

e-textile applications have been developed to enhance the architecture and analyze

the requirements of e-textile applications. The primary studies include the gait phase

recognition system and the hand motion recognition system. Additionally, the signals

processed by the FogETex framework have been integrated with textile-based soft

robotic systems to provide benefits to humans. For instance, exoskeleton gloves were

developed for individuals with muscle weakness. Lastly, a review study identified the

security and privacy requirements for e-textile applications, providing a roadmap for

the development of the framework. All these studies contributed to the creation of

features within the modules of the FogETex system, while also being unified under the

FogETex framework as an umbrella.

The applications developed were selected based on their suitability for testing the

system’s characteristics. The first case scenario was the gait phase recognition system,

which was used to test the system with a single sensor. This system, equipped with

123

a deep learning-based machine learning model, challenged the FogETex system in

terms of computation. Meanwhile, the system’s time characteristics, resource usage,

and network bandwidth usage metrics were measured across different experimental

scenarios and devices. The FogETex framework was tested in an ideal environment

with a mock client, and under real-life conditions with an actual client. To cover both

indoor and outdoor applications, tests were conducted on Wi-Fi with LAN and LTE

with WAN. In Wi-Fi tests, results for worker, broker, and cloud devices were analyzed,

whereas in LTE tests, only worker and cloud devices were examined. The broker

device was not separately analyzed in LTE tests, as it acted as a proxy to transfer data

from the user to the worker. The tests showed that in Wi-Fi tests, the worker device

with a mock client achieved a latency of 10.5 ms, while with an actual client, it showed

a latency of 22.3 ms. In LTE tests, the worker device had an average response time of

54.8 ms with the actual client and 88.0 ms with another actual client. As expected, the

worker device performed better in its category.

In the gait phase recognition system’s stress test, it was observed that the worker device

could serve up to 6 users in both LTE and Wi-Fi testbeds. While the broker could

serve up to 18 users and the cloud up to 14 users, the worker device was found to

be more advantageous in multi-worker scenarios and in terms of price-performance

comparison. When comparing the FogETex system to other works in the literature, it

was noted that the only similar system is HealthFog. In the same case scenario, the

FogETex system outperformed in latency, execution time, response time, and working

frequency. Thus, the FogETex system successfully passed single-sensor and multi-user

tests, showing its advantages over competitors.

In another case scenario, the assistive soft robotic glove control system was used.

In this scenario, the FogETex system was tested with multi-sensor inputs. Since the

developed application was cloud computing-based, it was observed that the framework

worked successfully across different computing devices. Each machine learning model

developed was integrated as a separate application into the system, allowing the

framework to run different applications within the same infrastructure. Additionally,

for the first time, soft robotics and e-textile applications were combined under the cloud

computing framework. Furthermore, it was observed that the FogETex framework

124

could integrate sensing and actuating devices from different locations. In the tests

conducted, the average response time was observed to be 48.4 ms, while the average

accuracy was calculated to be 93.45%. On the other hand, the fog system was tested

with the application using different concurrency and IPC methods. The multi-process

concurrency method, combined with the FIFO IPC technique, demonstrated the best

performance. It was observed that the system could serve up to 10 users with 1 worker,

up to 22 users with 2 workers, up to 26 users with 3 workers, and up to 23 users with

the cloud configuration.

The developed test cases have shown that the FogETex framework performs in a

real-time and robust manner across different scenarios, demonstrating its effectiveness

for e-textile applications. Furthermore, by providing the necessary computational

services for e-textile products, it has the potential to integrate all e-textile products

under one umbrella. Although the system was primarily developed for e-textile

applications, being designed as a PaaS model means there is no barrier to its use in

other IoT applications.

The future works of this thesis include the integration of various sensor applications

into the proposed framework. In addition to textile-based solutions, the FogETex

framework can be utilized to enhance the performance of non-textile sensor

and actuator systems. Addressing one of the primary challenges in e-textile

applications—connection issues arising from transitions between rigid and flexible

structures—could further strengthen the reliability of the framework.

Furthermore, enhancements to the FogETex framework can be explored to address

critical battery conditions or instances of incomplete sensor data. In such scenarios,

T-IoT devices could switch off their Bluetooth connections to conserve energy and

store data in their onboard memory. Additionally, applications involving sensors

operating at different frequencies can be developed, as not all sensors generate data

at the same rate. This flexibility would broaden the scope of the framework’s

applicability.

125

The current study validated the FogETex framework through system-level testing.

Future work should include real-world user testing to assess potential latency or

performance discrepancies across systems. For instance, the gait phase recognition

system could be integrated with foot-drop actuators, enabling it to function as a

controller. Clinical trials involving patients are planned for this integration, particularly

in conjunction with the assistive soft robotic glove project. These trials aim to evaluate

the system’s effectiveness in rehabilitation and assistive scenarios.

126

REFERENCES

[1] Du, K., Lin, R., Yin, L., Ho, J.S., Wang, J. and Lim, C.T. (2022). Electronic
textiles for energy, sensing, and communication, iScience, 25(5), 104174.

[2] Sanchez, V., Walsh, C.J. and Wood, R.J. (2021). Textile Technology for Soft
Robotic and Autonomous Garments, Advanced Functional Materials,
31(6), 2008278.

[3] Zaman, S.u., Tao, X., Cochrane, C. and Koncar, V. (2022). Smart E-Textile
Systems: A Review for Healthcare Applications, Electronics, 11(1), 99.

[4] Cherston, J. and Paradiso, J.A. (2019). SpaceSkin: development of
aerospace-grade electronic textile for simultaneous protection and high
velocity impact characterization, J.P. Lynch, H. Huang, H. Sohn and
K.W. Wang, editors, Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems 2019, volume10970, International
Society for Optics and Photonics, SPIE, p.109700J.

[5] Buechley, L. and Eisenberg, M. (2009). Fabric PCBs, electronic sequins, and
socket buttons: techniques for e-textile craft, Personal and Ubiquitous
Computing, 13, 133–150.

[6] Miyada, D. and Jing, L. (2021). Detection of Hand Strength Distribution with
E-Textile-Based Tactile Glove for Peach Harvesting, C. Stephanidis,
M. Antona and S. Ntoa, editors, HCI International 2021 - Posters,
Springer International Publishing, Cham, pp.366–372.

[7] Yilmaz, A.F., Ozlem, K., Celebi, M.F., Taherkhani, B., Kalaoglu, F., Atalay,
A.T., Ince, G. and Atalay, O. (2024). Design and Scalable Fast
Fabrication of Biaxial Fabric Pouch Motors for Soft Robotic Artificial
Muscle Applications, Advanced Intelligent Systems, 6(8), 2300888.

[8] Elmoughni, H.M., Yilmaz, A.F., Ozlem, K., Khalilbayli, F., Cappello, L.,
Tuncay Atalay, A., Ince, G. and Atalay, O. (2021). Machine-Knitted
Seamless Pneumatic Actuators for Soft Robotics: Design, Fabrication, and
Characterization, Actuators, 10(5), 94.

[9] Payra, S., Wicaksono, I., Cherston, J., Honnet, C., Sumini, V. and Paradiso,
J.A. (2021). Feeling Through Spacesuits: Application of Space-Resilient
E-Textiles to Enable Haptic Feedback on Pressurized Extravehicular Suits,
2021 IEEE Aerospace Conference (50100), pp.1–12.

127

[10] Hartman, K., Westecott, E., Colpitts-Campbell, I., Robinson Faber, J., Shao,
Y., Luginbuhl, C., Prior, O. and Laroia, M. (2021). Textile Game
Controllers: Exploring Affordances of E-Textile Techniques as Applied to
Alternative Game Controllers, Proceedings of the Fifteenth International
Conference on Tangible, Embedded, and Embodied Interaction, TEI ’21,
Association for Computing Machinery, pp.1–14.

[11] Gumus, C., Ozlem, K., Khalilbayli, F., Erzurumluoglu, O.F., Ince, G., Atalay,
O. and Atalay, A.T. (2022). Textile-based pressure sensor arrays: A
novel scalable manufacturing technique, Micro and Nano Engineering, 15,
100140.

[12] Mauriello, M., Gubbels, M. and Froehlich, J.E. (2014). Social Fabric Fitness:
The Design and Evaluation of Wearable E-Textile Displays to Support
Group Running, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14, Association for Computing
Machinery, pp.2833–2842.

[13] Glanc-Gostkiewicz, M. and Harris, N. (2017). A Textile Based Polypyrrole
Chloride Sensor for Agricultural Use, Proceedings, 1(4), 430.

[14] Kara, E. and Cagiltay, K. (2023). Using E-textiles to Design and Develop
Educational Games for Preschool-aged Children, Educational Technology
& Society, 26(2), pp. 19–35.

[15] Anne Schwarz, Lieva Van Langenhove, P.G. and Deguillemont, D. (2010). A
roadmap on smart textiles, Textile Progress, 42(2), 99–180.

[16] Elmoughni, H.M., Atalay, O., Ozlem, K. and Menon, A.K. (2022).
Thermoelectric Clothing for Body Heat Harvesting and Personal Cooling:
Design and Fabrication of a Textile-Integrated Flexible and Vertical
Device, Energy Technology, 10(10), 2200528.

[17] Li, X. and Sun, Y. (2017). WearETE: A Scalable Wearable E-Textile Triboelectric
Energy Harvesting System for Human Motion Scavenging, Sensors,
17(11), 2649.

[18] Hossain, I.Z., Khan, A. and Hossain, G. (2022). A Piezoelectric Smart Textile for
Energy Harvesting and Wearable Self-Powered Sensors, Energies, 15(15),
5541.

[19] Ali, I., Dulal, M., Karim, N. and Afroj, S. (2024). 2D Material-Based Wearable
Energy Harvesting Textiles: A Review, Small Structures, 5(1), 2300282.

[20] Gupta, P., Saini, D.K., Rawat, P. and Zia, K. (2023). Bio-Inspired Optimization
in Fog and Edge Computing Environments: Principles, Algorithms, and
Systems, CRC Press.

[21] Chen, C., Zhang, P., Zhang, H., Dai, J., Yi, Y., Zhang, H. and Zhang, Y.
(2020). Deep learning on computational-resource-limited platforms: a
survey, Mobile Information Systems, 2020, 1–19.

128

[22] Pazar, A., Khalilbayli, F., Ozlem, K., Yilmaz, A.F., Atalay, A.T., Atalay, O. and
İnce, G. (2022). Gait Phase Recognition using Textile-based Sensor, 7th
International Conference on Computer Science and Engineering (UBMK),
pp.1–6.

[23] Louis, M. and John, S. (1942). Electrically conductive fabric, US Patent
2,274,840.

[24] Seth, A. (1943). Electrically conductive fabric, US Patent 2,327,756.

[25] William, W. (1949). Electrically conductive fabric, US Patent 2,473,183.

[26] Sanders, J. (1974). Electrically-conductive textile fiber, US Patent 3,823,035.

[27] Paton, G.A., Nichols, S.M. and Sanders, J.H. (1977). Integral,
electrically-conductive textile filament, uS Patent 4,045,949.

[28] Özlem, K., Kuyucu, M.K., Bahtiyar, Ş. and İnce, G. (2019). Security
and Privacy Issues for E-textile Applications, 2019 4th International
Conference on Computer Science and Engineering (UBMK), IEEE,
pp.102–107.

[29] Castano, L.M. and Flatau, A.B. (2014). Smart fabric sensors and e-textile
technologies: a review, Smart Materials and Structures, 23(5), 053001.

[30] Farringdon, J. (2001). Wearable electronics and clothing from Philips and Levi,
Technical Textiles International, 10(8), 22–24.

[31] Paradiso, R., Belloc, C., Loriga, G. and Taccini, N. (2005). Wearable healthcare
systems, new frontiers of e-textile, Studies in health technology and
informatics, 117, 9–16.

[32] Van Langenhove, L. (2007). Smart textiles for medicine and healthcare:
materials, systems and applications, Elsevier.

[33] Winterhalter, C.A., Teverovsky, J., Wilson, P., Slade, J., Horowitz, W.,
Tierney, E. and Sharma, V. (2005). Development of electronic textiles to
support networks, communications, and medical applications in future US
Military protective clothing systems, IEEE Transactions on Information
Technology in Biomedicine, 9(3), 402–406.

[34] Cherston, J. and Paradiso, J.A. (2019). SpaceSkin: development of
aerospace-grade electronic textile for simultaneous protection and
high velocity impact characterization, Sensors and Smart Structures
Technologies for Civil, Mechanical, and Aerospace Systems 2019,
volume10970, International Society for Optics and Photonics, p.109700J.

[35] Carpi, F. and De Rossi, D. (2005). Electroactive polymer-based devices for
e-textiles in biomedicine, IEEE transactions on Information Technology
in biomedicine, 9(3), 295–318.

129

[36] Aigner, R., Pointner, A., Preindl, T., Parzer, P. and Haller, M. (2020).
Embroidered resistive pressure sensors: A novel approach for textile
interfaces, Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, pp.1–13.

[37] Pizarro, F., Villavicencio, P., Yunge, D., Rodríguez, M., Hermosilla, G. and
Leiva, A. (2018). Easy-to-build textile pressure sensor, Sensors, 18(4),
1190.

[38] Xu, W., Huang, M.C., Amini, N., He, L. and Sarrafzadeh, M. (2013). ecushion:
A textile pressure sensor array design and calibration for sitting posture
analysis, IEEE Sensors Journal, 13(10), 3926–3934.

[39] Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D.D. and Tao, X. (2010).
In-shoe plantar pressure measurement and analysis system based on fabric
pressure sensing array, IEEE Transactions on information technology in
biomedicine, 14(3), 767–775.

[40] Heo, J.S., Shishavan, H.H., Soleymanpour, R., Kim, J. and Kim, I. (2019).
Textile-based stretchable and flexible glove sensor for monitoring upper
extremity prosthesis functions, IEEE Sensors Journal, 20(4), 1754–1760.

[41] Shyr, T.W., Shie, J.W., Jiang, C.H. and Li, J.J. (2014). A textile-based wearable
sensing device designed for monitoring the flexion angle of elbow and
knee movements, Sensors, 14(3), 4050–4059.

[42] Mattmann, C., Amft, O., Harms, H., Troster, G. and Clemens, F. (2007).
Recognizing upper body postures using textile strain sensors, 2007 11th
IEEE international symposium on wearable computers, IEEE, pp.29–36.

[43] Atalay, O., Kennon, W.R. and Demirok, E. (2014). Weft-knitted strain sensor
for monitoring respiratory rate and its electro-mechanical modeling, IEEE
Sensors Journal, 15(1), 110–122.

[44] Ozlem, K., Atalay, O., Atalay, A. and Ince, G. (2019). Textile Based Sensing
System for Lower Limb Motion Monitoring, L. Masia, S. Micera,
M. Akay and J.L. Pons, editors, Converging Clinical and Engineering
Research on Neurorehabilitation III, Springer International Publishing,
Cham, pp.395–399.

[45] Soukup, R., Hamacek, A., Mracek, L. and Reboun, J. (2014). Textile based
temperature and humidity sensor elements for healthcare applications,
Proceedings of the 2014 37th international spring seminar on electronics
technology, IEEE, pp.407–411.

[46] Husain, M.D. and Kennon, R. (2013). Preliminary investigations into
the development of textile based temperature sensor for healthcare
applications, Fibers, 1(1), 2–10.

130

[47] Atalay, A., Sanchez, V., Atalay, O., Vogt, D.M., Haufe, F., Wood, R.J. and
Walsh, C.J. (2017). Batch fabrication of customizable silicone-textile
composite capacitive strain sensors for human motion tracking, Advanced
Materials Technologies, 2(9), 1700136.

[48] Meyer, J., Lukowicz, P. and Troster, G. (2006). Textile pressure sensor for muscle
activity and motion detection, 2006 10th IEEE International Symposium
on Wearable Computers, IEEE, pp.69–72.

[49] Yang, C., Yang, T., Wu, C., Hung, S., Liao, M., Su, M. and Hsieh, H. (2014).
Textile-based capacitive sensor for a wireless wearable breath monitoring
system, 2014 IEEE International Conference on Consumer Electronics
(ICCE), IEEE, pp.232–233.

[50] Özlem, K., (2018). Textile Based Sensing System For Leg Motion Monitoring,
Master’s thesis, Istanbul Technical University, Graduate School Of
Science Engineering and Technology, advisor: Asst. Prof. Dr. Gökhan
İNCE.

[51] Teodorescu, M. and Teodorescu, H.N. (2020). Capacitive Interdigital Sensors
for Flexible Enclosures and Wearables, 2020 International Conference on
Applied Electronics (AE), pp.1–6.

[52] Atalay, O. (2018). Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for
Wearable Applications, Materials, 11(5), 768.

[53] Martínez-Estrada, M., Ventura, H., Gil, I. and Fernández-García, R. (2023). A
Full Textile Capacitive Woven Sensor, Advanced Materials Technologies,
8(1), 2200284.

[54] Yilmaz, A.F., Ahmed, I.A.K., Gumus, C., Ozlem, K., Cetin, M.S., Atalay,
A.T., Ince, G. and Atalay, O. (2024). Highly Stretchable Textile Knitted
Interdigital Sensor for Wearable Technology Applications, Advanced
Sensor Research, 3(2), 2300121.

[55] Zhang, Q., Wang, Y.L., Xia, Y., Zhang, P.F., Kirk, T.V. and Chen, X.D.
(2019). Textile-only capacitive sensors for facile fabric integration without
compromise of wearability, Advanced Materials Technologies, 4(10),
1900485.

[56] Kuyucu, C.F., Ayvaz, U., Özlem, K., Atalay, A., Atalay, O. and İnce, G. (2019).
Comparative Assessment of Knee Motion Monitoring Technologies, 2019
4th International Conference on Computer Science and Engineering
(UBMK), pp.155–160.

[57] Ayvaz, U., Elmoughni, H., Atalay, A., Atalay, Ö. and Ince, G. (2020).
Real-Time Human Activity Recognition Using Textile-Based Sensors, EAI
International Conference on Body Area Networks, Springer, pp.168–183.

131

[58] Sevinc, H., Ayvaz, U., Ozlem, K., Elmoughni, H., Atalay, A., Atalay, O. and
Ince, G. (2020). Step Length Estimation Using Sensor Fusion, 2020 IEEE
International Conference on Flexible and Printable Sensors and Systems
(FLEPS), pp.1–4.

[59] Rao, S. and Carter, S. (2012). Regional plantar pressure during walking, stair
ascent and descent, Gait & posture, 36(2), 265–270.

[60] Valtonen, M., Maentausta, J. and Vanhala, J. (2009). Tiletrack: Capacitive
human tracking using floor tiles, 2009 IEEE international conference on
pervasive computing and communications, IEEE, pp.1–10.

[61] Singh, G., Nelson, A., Robucci, R., Patel, C. and Banerjee, N. (2015).
Inviz: Low-power personalized gesture recognition using wearable textile
capacitive sensor arrays, 2015 IEEE international conference on pervasive
computing and communications (PerCom), IEEE, pp.198–206.

[62] Baldwin, R., Bobovych, S., Robucci, R., Patel, C. and Banerjee, N. (2015).
Gait analysis for fall prediction using hierarchical textile-based capacitive
sensor arrays, 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), IEEE, pp.1293–1298.

[63] Koo, H.R., Lee, Y.J., Gi, S., Khang, S., Lee, J.H., Lee, J.H., Lim, M.G.,
Park, H.J. and Lee, J.W. (2014). The effect of textile-based inductive
coil sensor positions for heart rate monitoring, Journal of medical systems,
38(2), 1–12.

[64] Tavassolian, M., Cuthbert, T.J., Napier, C., Peng, J. and Menon, C. (2020).
Textile-Based Inductive Soft Strain Sensors for Fast Frequency Movement
and Their Application in Wearable Devices Measuring Multiaxial Hip
Joint Angles during Running, Advanced Intelligent Systems, 2(4),
1900165.

[65] García Patiño, A., Khoshnam, M. and Menon, C. (2020). Wearable device to
monitor back movements using an inductive textile sensor, Sensors, 20(3),
905.

[66] Pola, T. and Vanhala, J. (2007). Textile electrodes in ECG measurement, 2007
3rd International Conference on Intelligent Sensors, Sensor Networks and
Information, IEEE, pp.635–639.

[67] Pani, D., Dessì, A., Saenz-Cogollo, J.F., Barabino, G., Fraboni, B. and
Bonfiglio, A. (2015). Fully textile, PEDOT: PSS based electrodes for
wearable ECG monitoring systems, IEEE Transactions on Biomedical
Engineering, 63(3), 540–549.

[68] Zhou, Y., Ding, X., Zhang, J., Duan, Y., Hu, J. and Yang, X. (2014). Fabrication
of conductive fabric as textile electrode for ECG monitoring, Fibers and
Polymers, 15(11), 2260–2264.

132

[69] Finni, T., Hu, M., Kettunen, P., Vilavuo, T. and Cheng, S. (2007).
Measurement of EMG activity with textile electrodes embedded into
clothing, Physiological measurement, 28(11), 1405.

[70] Zhang, H., Tian, L., Zhang, L. and Li, G. (2013). Using textile electrode EMG
for prosthetic movement identification in transradial amputees, 2013 IEEE
International Conference on Body Sensor Networks, IEEE, pp.1–5.

[71] Löfhede, J., Seoane, F. and Thordstein, M. (2010). Soft textile electrodes for
EEG monitoring, Proceedings of the 10th IEEE International Conference
on Information Technology and Applications in Biomedicine, IEEE,
pp.1–4.

[72] Löfhede, J., Seoane, F. and Thordstein, M. (2012). Textile electrodes for EEG
recording—A pilot study, Sensors, 12(12), 16907–16919.

[73] Paket, E., Ozlem, K., Elmoughni, H., Atalay, A., Atalay, O. and Ince, G.
(2020). ECG Monitoring System Using Textile Electrodes, 2020 28th
Signal Processing and Communications Applications Conference (SIU),
IEEE, pp.1–4.

[74] Persson, N.K., Martinez, J.G., Zhong, Y., Maziz, A. and Jager, E.W.H.
(2018). Actuating Textiles: Next Generation of Smart Textiles, Advanced
Materials Technologies, 3(10), 1700397.

[75] Mahadevan, K., Stoltzfus, A., Dealey, S. and Granberry, R. (2023). 3D knit
pneumatic actuators for wearable haptic displays, Extreme Mechanics
Letters, 65, 102102.

[76] Zannat, A., Uddin, M.N., Mahmud, S.T., Prithu, P.S.S. and Mia, R. (2023).
Review: Textile-based soft robotics for physically challenged individuals,
Journal of Materials Science, 58(31), 12491–12536.

[77] Thalman, C. and Artemiadis, P. (2020). A review of soft wearable robots that
provide active assistance: Trends, common actuation methods, fabrication,
and applications, Wearable Technologies, 1, e3.

[78] Xiloyannis, M., Cappello, L., Binh, K.D., Antuvan, C.W. and Masia, L.
(2017). Preliminary design and control of a soft exosuit for assisting
elbow movements and hand grasping in activities of daily living,
Journal of Rehabilitation and Assistive Technologies Engineering, 4,
2055668316680315.

[79] Xiloyannis, M., Chiaradia, D., Frisoli, A. and Masia, L. (2019). Physiological
and kinematic effects of a soft exosuit on arm movements, Journal of
NeuroEngineering and Rehabilitation, 16(1), 29.

[80] Schmidt, K., Duarte, J.E., Grimmer, M., Sancho-Puchades, A., Wei, H.,
Easthope, C.S. and Riener, R. (2017). The Myosuit: Bi-articular
Anti-gravity Exosuit That Reduces Hip Extensor Activity in Sitting
Transfers, Frontiers in Neurorobotics, 11, 57.

133

[81] Asbeck, A.T., Schmidt, K. and Walsh, C.J. (2015). Soft exosuit for hip
assistance, Robotics and Autonomous Systems, 73, 102–110.

[82] Ding, Y., Kim, M., Kuindersma, S. and Walsh, C.J. (2018). Human-in-the-loop
optimization of hip assistance with a soft exosuit during walking, Science
Robotics, 3(15), eaar5438.

[83] Samper-Escudero, J.L., Giménez-Fernandez, A., Sánchez-Urán, M.A. and
Ferre, M. (2020). A Cable-Driven Exosuit for Upper Limb Flexion Based
on Fibres Compliance, IEEE Access, 8, 153297–153310.

[84] Popov, D., Gaponov, I. and Ryu, J.H. (2017). Portable Exoskeleton Glove
With Soft Structure for Hand Assistance in Activities of Daily Living,
IEEE/ASME Transactions on Mechatronics, 22(2), 865–875.

[85] Rognon, C., Ramachandran, V., Wu, A.R., Ijspeert, A.J. and Floreano, D.
(2019). Haptic Feedback Perception and Learning With Cable-Driven
Guidance in Exosuit Teleoperation of a Simulated Drone, IEEE
Transactions on Haptics, 12(3), 375–385.

[86] Chen, Y., Yang, Y., Li, M., Chen, E., Mu, W., Fisher, R. and Yin, R. (2021).
Wearable Actuators: An Overview, Textiles, 1(2), 283–321.

[87] Thalman, C.M., Baye-Wallace, L. and Lee, H. (2021). A Soft Robotic Hip
Exosuit (SR-HExo) to Assist Hip Flexion and Extension during Human
Locomotion, 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp.5060–5066.

[88] Belforte, G., Eula, G., Ivanov, A., Raparelli, T. and Sirolli, S. (2018).
Presentation of textile pneumatic muscle prototypes applied in an upper
limb active suit experimental model, The Journal of The Textile Institute,
109(6), 757–766.

[89] Sridar, S., Veale, A.J., Sartori, M. and van der Kooij, H. (2023). Exploiting a
Simple Asymmetric Pleating Method to Realize a Textile Based Bending
Actuator, IEEE Robotics and Automation Letters, 8(3), 1794–1801.

[90] Sanchez, V., Mahadevan, K., Ohlson, G., Graule, M.A., Yuen, M.C., Teeple,
C.B., Weaver, J.C., McCann, J., Bertoldi, K. and Wood, R.J. (2023).
3D Knitting for Pneumatic Soft Robotics, Advanced Functional Materials,
33(26), 2212541.

[91] O’Neill, C.T., McCann, C.M., Hohimer, C.J., Bertoldi, K. and Walsh,
C.J. (2022). Unfolding Textile-Based Pneumatic Actuators for Wearable
Applications, Soft Robotics, 9(1), 163–172.

[92] Ge, L., Chen, F., Wang, D., Zhang, Y., Han, D., Wang, T. and Gu, G. (2020).
Design, Modeling, and Evaluation of Fabric-Based Pneumatic Actuators
for Soft Wearable Assistive Gloves, Soft Robotics, 7(5), 583–596.

134

[93] Yilmaz, A.F., Khalilbayli, F., Ozlem, K., Elmoughni, H.M., Kalaoglu, F.,
Atalay, A.T., Ince, G. and Atalay, O. (2022). Effect of Segment Types
on Characterization of Soft Sensing Textile Actuators for Soft Wearable
Robots, Biomimetics, 7(4), 249.

[94] Suulker, C., Skach, S. and Althoefer, K. (2022). Soft Robotic Fabric Actuator
With Elastic Bands for High Force and Bending Performance in Hand
Exoskeletons, IEEE Robotics and Automation Letters, 7(4), 10621–10627.

[95] Yilmaz, A.F., Ozlem, K., Khalilbayli, F., Celebi, M.F., Kalaoglu, F., Atalay,
A.T., Ince, G. and Atalay, O. (2024). Resistive Self-Sensing Controllable
Fabric-Based Actuator: A Novel Approach to Creating Anisotropy,
Advanced Sensor Research, 3(7), 2300108.

[96] Cappello, L., Galloway, K.C., Sanan, S., Wagner, D.A., Granberry, R.,
Engelhardt, S., Haufe, F.L., Peisner, J.D. and Walsh, C.J. (2018).
Exploiting Textile Mechanical Anisotropy for Fabric-Based Pneumatic
Actuators, Soft Robotics, 5(5), 662–674.

[97] Luo, Y., Wu, K., Spielberg, A., Foshey, M., Rus, D., Palacios, T. and Matusik,
W. (2022). Digital Fabrication of Pneumatic Actuators with Integrated
Sensing by Machine Knitting, Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, CHI ’22, Association for
Computing Machinery, New York, NY, USA, pp.1–13.

[98] Fang, J., Yuan, J., Wang, M., Xiao, L., Yang, J., Lin, Z., Xu, P. and Hou, L.
(2020). Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee
Assistive Devices, Soft Robotics, 7(1), 95–108.

[99] Nassour, J. and Hamker, F. (2019). Enfolded Textile Actuator for Soft Wearable
Robots, 2019 IEEE International Conference on Cyborg and Bionic
Systems (CBS), pp.60–65.

[100] Kim, J.H.H., Patil, S.D., Matson, S., Conroy, M. and Kao, C.H.L. (2022).
KnitSkin: Machine-Knitted Scaled Skin for Locomotion, Proceedings
of the 2022 CHI Conference on Human Factors in Computing Systems,
CHI ’22, Association for Computing Machinery, New York, NY, USA,
pp.1–15.

[101] Ma, J., Chen, D., Liu, Z., Wei, J., Zhang, X., Zeng, Z. and Jiang, Y. (2023).
All-Fabric Bi-directional Actuators for Multi-joint Assistance of Upper
Limb, Journal of Bionic Engineering, 20(6), 2661–2669.

[102] Eschen, K., Granberry, R., Holschuh, B. and Abel, J. (2020). Amplifying and
Leveraging Generated Force Upon Heating and Cooling in SMA Knitted
Actuators, ACS Applied Materials & Interfaces, 12(48), 54155–54167.

[103] Asar, A., Irfan, M., Khan, K., Zaki, W. and Umer, R. (2022). Self-sensing
shape memory polymer composites reinforced with functional textiles,
Composites Science and Technology, 221, 109219.

135

[104] Lee, J.A., Li, N., Haines, C.S., Kim, K.J., Lepró, X., Ovalle-Robles, R.,
Kim, S.J. and Baughman, R.H. (2017). Electrochemically Powered,
Energy-Conserving Carbon Nanotube Artificial Muscles, Advanced
Materials, 29(31), 1700870.

[105] Jang, Y., Kim, S.M., Spinks, G.M. and Kim, S.J. (2020). Carbon Nanotube
Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage
for Smart Systems, Advanced Materials, 32(5), 1902670.

[106] Aziz, S., Martinez, J.G., Foroughi, J., Spinks, G.M. and Jager, E.W.H. (2020).
Artificial Muscles from Hybrid Carbon Nanotube-Polypyrrole-Coated
Twisted and Coiled Yarns, Macromolecular Materials and Engineering,
305(11), 2000421.

[107] Arora, S., Ghosh, T. and Muth, J. (2007). Dielectric elastomer based prototype
fiber actuators, Sensors and Actuators A: Physical, 136(1), 321–328.

[108] Jia, T., Wang, Y., Dou, Y., Li, Y., Jung de Andrade, M., Wang, R., Fang, S., Li,
J., Yu, Z., Qiao, R., Liu, Z., Cheng, Y., Su, Y., Minary-Jolandan, M.,
Baughman, R.H., Qian, D. and Liu, Z. (2019). Moisture Sensitive Smart
Yarns and Textiles from Self-Balanced Silk Fiber Muscles, Advanced
Functional Materials, 29(18), 1808241.

[109] Wu, J., Jiang, W., Gu, M., Sun, F., Han, C. and Gong, H. (2023). Flexible
Actuators with Hygroscopic Adaptability for Smart Wearables and Soft
Grippers, ACS Applied Materials & Interfaces, 15(51), 59989–60001.

[110] Zhao, H., Qi, X., Ma, Y., Sun, X., Liu, X., Zhang, X., Tian, M. and Qu,
L. (2021). Wearable Sunlight-Triggered Bimorph Textile Actuators, Nano
Letters, 21(19), 8126–8134.

[111] Kim, S., Gu, S. and Kim, J. (2022). Variable Shape and Stiffness Feedback
System for VR Gloves Using SMA Textile Actuator, Fibers and Polymers,
23(3), 836–842.

[112] Shin, J., Han, Y.J., Lee, J.H. and Han, M.W. (2023). Shape Memory Alloys in
Textile Platform: Smart Textile-Composite Actuator and Its Application
to Soft Grippers, Sensors, 23(3), 1518.

[113] Kim, C., Kim, G., Lee, Y., Lee, G., Han, S., Kang, D., Koo, S.H. and Koh, J.s.
(2020). Shape memory alloy actuator-embedded smart clothes for ankle
assistance, Smart Materials and Structures, 29(5), 055003.

[114] Park, S.J. and Park, C.H. (2019). Suit-type Wearable Robot Powered by
Shape-memory-alloy-based Fabric Muscle, Scientific Reports, 9(1), 9157.

[115] Wang, W., Yao, L., Cheng, C.Y., Zhang, T., Atsumi, H., Wang, L., Wang,
G., Anilionyte, O., Steiner, H., Ou, J., Zhou, K., Wawrousek, C.,
Petrecca, K., Belcher, A.M., Karnik, R., Zhao, X., Wang, D.I.C. and
Ishii, H. (2017). Harnessing the hygroscopic and biofluorescent behaviors
of genetically tractable microbial cells to design biohybrid wearables,
Science Advances, 3(5), e1601984.

136

[116] Hoffmann, R., Brodowski, H., Steinhage, A. and Grzegorzek, M. (2021).
Detecting walking challenges in gait patterns using a capacitive sensor
floor and recurrent neural networks, Sensors, 21(4), 1086.

[117] Ren, K., Chen, Z., Ling, Y. and Zhao, J. (2022). Recognition of freezing of
gait in Parkinson’s disease based on combined wearable sensors, BMC
neurology, 22(1), 1–13.

[118] Khan, M.H., Farid, M.S. and Grzegorzek, M. (2020). A non-linear view
transformations model for cross-view gait recognition, Neurocomputing,
402, 100–111.

[119] Muñoz, B., Castaño-Pino, Y.J., Paredes, J.D.A. and Navarro, A. (2018).
Automated gait analysis using a Kinect camera and wavelets, 2018 IEEE
20th International Conference on e-Health Networking, Applications and
Services (Healthcom), IEEE, pp.1–5.

[120] Rezaei, A., Ejupi, A., Gholami, M., Ferrone, A. and Menon, C. (2018).
Preliminary investigation of textile-based strain sensors for the detection
of human gait phases using machine learning, 2018 7th IEEE International
Conference on Biomedical Robotics and Biomechatronics (Biorob), IEEE,
pp.563–568.

[121] Aqueveque, P., Pastene, F., Osorio, R., Saavedra, F., Pinto, D.,
Ortega-Bastidas, P. and Gomez, B. (2020). A novel capacitive step
sensor to trigger stimulation on functional electrical stimulators devices
for Drop Foot, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 28(12), 3083–3088.

[122] Washabaugh, E.P., Kalyanaraman, T., Adamczyk, P.G., Claflin, E.S. and
Krishnan, C. (2017). Validity and repeatability of inertial measurement
units for measuring gait parameters, Gait & posture, 55, 87–93.

[123] Sigcha, L., Costa, N., Pavón, I., Costa, S., Arezes, P., López, J.M. and
De Arcas, G. (2020). Deep learning approaches for detecting freezing of
gait in Parkinson’s disease patients through on-body acceleration sensors,
Sensors, 20(7), 1895.

[124] Qiu, S., Wang, Z., Zhao, H., Qin, K., Li, Z. and Hu, H. (2018).
Inertial/magnetic sensors based pedestrian dead reckoning by means of
multi-sensor fusion, Information Fusion, 39, 108–119.

[125] Nakamoto, H., Yamaji, T., Hirata, I., Ootaka, H. and Kobayashi, F. (2018).
Joint angle measurement by stretchable strain sensor, Journal of Ambient
Intelligence and Humanized Computing, 14(11), 1–6.

[126] Di Nardo, F., Morbidoni, C., Cucchiarelli, A. and Fioretti, S. (2020).
Recognition of Gait Phases with a Single Knee Electrogoniometer: A
Deep Learning Approach, Electronics, 9(2), 355.

137

[127] Ding, Z., Yang, C., Xing, K., Ma, X., Yang, K., Guo, H., Yi, C. and Jiang,
F. (2018). The real time gait phase detection based on long short-term
memory, 2018 IEEE Third International Conference on Data Science in
Cyberspace (DSC), IEEE, pp.33–38.

[128] Gadaleta, M., Cisotto, G., Rossi, M., Rehman, R.Z.U., Rochester, L. and
Del Din, S. (2019). Deep learning techniques for improving digital
gait segmentation, 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), IEEE,
pp.1834–1837.

[129] Phan, D., Nguyen, N., Pathirana, P.N., Horne, M., Power, L. and Szmulewicz,
D. (2019). A random forest approach for quantifying gait ataxia with
truncal and peripheral measurements using multiple wearable sensors,
IEEE Sensors Journal, 20(2), 723–734.

[130] Shetty, S. and Rao, Y. (2016). SVM based machine learning approach to identify
Parkinson’s disease using gait analysis, 2016 International Conference on
Inventive Computation Technologies (ICICT), volume 2, IEEE, pp.1–5.

[131] Yan, C., Zhang, B. and Coenen, F. (2015). Multi-attributes gait identification by
convolutional neural networks, 2015 8th International Congress on Image
and Signal Processing (CISP), IEEE, pp.642–647.

[132] Amirpour, E., Fesharakifard, R., Ghafarirad, H., Rezaei, S.M., Saboukhi,
A., Savabi, M. and Gorji, M.R. (2022). A novel hand exoskeleton to
enhance fingers motion for tele-operation of a robot gripper with force
feedback, Mechatronics, 81, 102695.

[133] Peperoni, E., Capitani, S.L., Fiumalbi, T., Capotorti, E., Baldoni, A.,
Dell’Agnello, F., Creatini, I., Taglione, E., Vitiello, N., Trigili, E. and
Crea, S. (2023). Self-Aligning Finger Exoskeleton for the Mobilization of
the Metacarpophalangeal Joint, IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 31, 884–894.

[134] Haarman, C.J.W., Hekman, E.E.G., Rietman, J.S. and Van Der Kooij, H.
(2023). Mechanical Design and Feasibility of a Finger Exoskeleton to
Support Finger Extension of Severely Affected Stroke Patients, IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 31,
1268–1276.

[135] Sun, N., Li, G. and Cheng, L. (2021). Design and Validation of a
Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation,
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29,
1513–1523.

[136] Burns, M.K. and Vinjamuri, R. (2020). Design of a Soft Glove-Based Robotic
Hand Exoskeleton with Embedded Synergies, Springer International
Publishing, Cham, pp.71–87.

138

[137] Meyer-Heim, A. and van Hedel, H.J. (2013). Robot-Assisted and
Computer-Enhanced Therapies for Children with Cerebral Palsy: Current
State and Clinical Implementation, Seminars in Pediatric Neurology,
20(2), 139–145.

[138] Sanders, Q., Chan, V., Augsburger, R., Cramer, S.C., Reinkensmeyer, D.J.
and Do, A.H. (2020). Feasibility of Wearable Sensing for In-Home Finger
Rehabilitation Early After Stroke, IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 28(6), 1363–1372.

[139] Park, S., Fraser, M., Weber, L.M., Meeker, C., Bishop, L., Geller, D., Stein,
J. and Ciocarlie, M. (2020). User-Driven Functional Movement Training
With a Wearable Hand Robot After Stroke, IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 28(10), 2265–2275.

[140] Gu, W., Yan, S., Xiong, J., Li, Y., Zhang, Q., Li, K., Hou, C. and Wang,
H. (2023). Wireless smart gloves with ultra-stable and all-recyclable
liquid metal-based sensing fibers for hand gesture recognition, Chemical
Engineering Journal, 460, 141777.

[141] Chu, M., Cui, Z., Zhang, A., Yao, J., Tang, C., Fu, Z., Nathan, A. and Gao, S.
(2022). Multisensory Fusion, Haptic, and Visual Feedback Teleoperation
System Under IoT Framework, IEEE Internet of Things Journal, 9(20),
19717–19727.

[142] Yu, F., Chen, Z., Jiang, M., Tian, Z., Peng, T. and Hu, X. (2023).
Smart Clothing System With Multiple Sensors Based on Digital Twin
Technology, IEEE Internet of Things Journal, 10(7), 6377–6387.

[143] Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J. and Walsh, C.J. (2015).
Soft robotic glove for combined assistance and at-home rehabilitation,
Robotics and Autonomous Systems, 73, 135–143.

[144] Câmara Gradim, L.C., Archanjo José, M., Marinho Cezar da Cruz, D.
and de Deus Lopes, R. (2020). IoT Services and Applications in
Rehabilitation: An Interdisciplinary and Meta-Analysis Review, IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 28(9),
2043–2052.

[145] Nuckols, R.W., Lee, S., Swaminathan, K., Orzel, D., Howe, R.D. and
Walsh, C.J. (2021). Individualization of exosuit assistance based on
measured muscle dynamics during versatile walking, Science Robotics,
6(60), eabj1362.

[146] Gasser, B.W., Martínez, A., Sasso-Lance, E., Kandilakis, C., Durrough,
C.M. and Goldfarb, M. (2020). Preliminary Assessment of a Hand
and Arm Exoskeleton for Enabling Bimanual Tasks for Individuals With
Hemiparesis, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 28(10), 2214–2223.

139

[147] Zeng, H., Yu, W., Chen, D., Hu, X., Zhang, D. and Song, A. (2022).
Exploring Biomimetic Stiffness Modulation and Wearable Finger Haptics
for Improving Myoelectric Control of Virtual Hand, IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 30, 1601–1611.

[148] M, S., Venusamy, K., S, S., S, S. and O, N.K. (2023). A Comprehensive Review
of Haptic Gloves: Advances, Challenges, and Future Directions, 2023
Second International Conference on Electronics and Renewable Systems
(ICEARS), pp.227–233.

[149] Salman, F., Cui, Y., Imran, Z., Liu, F., Wang, L. and Wu, W. (2020). A
Wireless-controlled 3D printed Robotic Hand Motion System with Flex
Force Sensors, Sensors and Actuators A: Physical, 309, 112004.

[150] Yap, H.K., Khin, P.M., Koh, T.H., Sun, Y., Liang, X., Lim, J.H. and Yeow,
C.H. (2017). A Fully Fabric-Based Bidirectional Soft Robotic Glove for
Assistance and Rehabilitation of Hand Impaired Patients, IEEE Robotics
and Automation Letters, 2(3), 1383–1390.

[151] Soekadar, S.R., Witkowski, M., Gómez, C., Opisso, E., Medina, J.,
Cortese, M., Cempini, M., Carrozza, M.C., Cohen, L.G., Birbaumer,
N. and Vitiello, N. (2016). Hybrid EEG/EOG-based brain/neural
hand exoskeleton restores fully independent daily living activities after
quadriplegia, Science Robotics, 1(1), eaag3296.

[152] Dunaway, S., Dezsi, D.B., Perkins, J., Tran, D. and Naft, J. (2017). Case Report
on the Use of a Custom Myoelectric Elbow–Wrist–Hand Orthosis for the
Remediation of Upper Extremity Paresis and Loss of Function in Chronic
Stroke, Military Medicine, 182(7), e1963–e1968.

[153] Secciani, N., Topini, A., Ridolfi, A., Meli, E. and Allotta, B. (2020). A Novel
Point-in-Polygon-Based sEMG Classifier for Hand Exoskeleton Systems,
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
28(12), 3158–3166.

[154] Tran, P., Jeong, S., Wolf, S.L. and Desai, J.P. (2020). Patient-Specific,
Voice-Controlled, Robotic FLEXotendon Glove-II System for Spinal Cord
Injury, IEEE Robotics and Automation Letters, 5(2), 898–905.

[155] Hazubski, S., Hoppe, H. and Otte, A. (2020). Non-contact visual control of
personalized hand prostheses/exoskeletons by tracking using augmented
reality glasses, 3D printing in medicine, 6, 6.

[156] Chen, W., Li, G., Li, N., Wang, W., Yu, P., Wang, R., Xue, X., Zhao, X.
and Liu, L. (2023). Restoring Voluntary Bimanual Activities of Patients
With Chronic Hemiparesis Through a Foot-Controlled Hand/Forearm
Exoskeleton, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 31, 769–778.

140

[157] Hampali, S., Rad, M., Oberweger, M. and Lepetit, V. (2020). HOnnotate: A
Method for 3D Annotation of Hand and Object Poses, Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, Washington.

[158] Yuan, S., Ye, Q., Stenger, B., Jain, S. and Kim, T.K. (2017). BigHand2.2M
Benchmark: Hand Pose Dataset and State of the Art Analysis, Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, Hawaii.

[159] Lee, Y., Kim, M., Lee, Y., Kwon, J., Park, Y.L. and Lee, D. (2019). Wearable
Finger Tracking and Cutaneous Haptic Interface with Soft Sensors
for Multi-Fingered Virtual Manipulation, IEEE/ASME Transactions on
Mechatronics, 24(1), 67–77.

[160] Sun, H., Kuchenbecker, K.J. and Martius, G. (2022). A soft thumb-sized
vision-based sensor with accurate all-round force perception, Nature
Machine Intelligence, 4(2), 135–145.

[161] Armagan, A., Garcia-Hernando, G., Baek, S., Hampali, S., Rad, M., Zhang,
Z., Xie, S., Chen, M., Zhang, B., Xiong, F., Xiao, Y., Cao, Z., Yuan,
J., Ren, P., Huang, W., Sun, H., Hrúz, M., Kanis, J., Krňoul, Z.,
Wan, Q., Li, S., Yang, L., Lee, D., Yao, A., Zhou, W., Mei, S., Liu,
Y., Spurr, A., Iqbal, U., Molchanov, P., Weinzaepfel, P., Brégier, R.,
Rogez, G., Lepetit, V. and Kim, T.K. (2020). Measuring Generalisation
to Unseen Viewpoints, Articulations, Shapes and Objects for 3D Hand
Pose Estimation Under Hand-Object Interaction, A. Vedaldi, H. Bischof,
T. Brox and J.M. Frahm, editors, Computer Vision – ECCV 2020,
Springer International Publishing, Cham, pp.85–101.

[162] Baldi, T.L., Scheggi, S., Meli, L., Mohammadi, M. and Prattichizzo, D.
(2017). GESTO: A Glove for Enhanced Sensing and Touching Based
on Inertial and Magnetic Sensors for Hand Tracking and Cutaneous
Feedback, IEEE Transactions on Human-Machine Systems, 47(6),
1066–1076.

[163] Thuruthel, T.G., Shih, B., Laschi, C. and Tolley, M.T. (2019). Soft robot
perception using embedded soft sensors and recurrent neural networks,
Science Robotics, 4(26), eaav1488.

[164] Milea, P., Dascalu, M., Opris, C., Franti, E., Dumitrache, M. and Stoica,
C.I. (2016). Using pressure sensors for motion detection and actuation of
remote manipulation devices, Romanian journal of information science
and technology, 19(4), 321–330.

[165] Massari, L., Fransvea, G., D’Abbraccio, J., Filosa, M., Terruso, G., Aliperta,
A., D’Alesio, G., Zaltieri, M., Schena, E., Palermo, E. et al. (2022).
Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep
neural networks enables a bio-inspired large-area tactile-sensitive skin,
Nature Machine Intelligence, 4(5), 425–435.

141

[166] Luo, Y., Wang, Z., Wang, J., Xiao, X., Li, Q., Ding, W. and Fu, H.
(2021). Triboelectric bending sensor based smart glove towards intuitive
multi-dimensional human-machine interfaces, Nano Energy, 89, 106330.

[167] Ling Li, Shuo Jiang, P.B.S. and Gu, G. (2018). SkinGest: artificial skin
for gesture recognition via filmy stretchable strain sensors*, Advanced
Robotics, 32(21), 1112–1121.

[168] Saypulaev, G.R., Merkuryev, I.V., Saypulaev, M.R., Shestakov, V.K.,
Glazkov, N.V. and Andreev, D.R. (2023). A Review of Robotic Gloves
Applied for Remote Control in Various Systems, 2023 5th International
Youth Conference on Radio Electronics, Electrical and Power Engineering
(REEPE), volume 5, pp.1–6.

[169] Haghshenas-Jaryani, M., Patterson, R.M., Bugnariu, N. and Wijesundara,
M.B. (2020). A pilot study on the design and validation of a hybrid
exoskeleton robotic device for hand rehabilitation, Journal of Hand
Therapy, 33(2), 198–208.

[170] Sarajchi, M., Al-Hares, M.K. and Sirlantzis, K. (2021). Wearable Lower-Limb
Exoskeleton for Children With Cerebral Palsy: A Systematic Review
of Mechanical Design, Actuation Type, Control Strategy, and Clinical
Evaluation, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 29, 2695–2720.

[171] Hu, D., Giorgio-Serchi, F., Zhang, S. and Yang, Y. (2023). Stretchable e-skin
and transformer enable high-resolution morphological reconstruction for
soft robots, Nature Machine Intelligence, 5(3), 261–272.

[172] Kim, T., Lee, S., Hong, T., Shin, G., Kim, T. and Park, Y.L. (2020).
Heterogeneous sensing in a multifunctional soft sensor for human-robot
interfaces, Science Robotics, 5(49), eabc6878.

[173] Maeder-York, P., Clites, T., Boggs, E., Neff, R., Polygerinos, P., Holland,
D., Stirling, L., Galloway, K., Wee, C. and Walsh, C. (2014).
Biologically Inspired Soft Robot for Thumb Rehabilitation, Journal of
Medical Devices, 8(2), 020933.

[174] Lai, J., Song, A., Wang, J., Lu, Y., Wu, T., Li, H., Xu, B. and Wei, X. (2023). A
Novel Soft Glove Utilizing Honeycomb Pneumatic Actuators (HPAs) for
Assisting Activities of Daily Living, IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 31, 3223–3233.

[175] Correia, C., Nuckols, K., Wagner, D., Zhou, Y.M., Clarke, M., Orzel, D.,
Solinsky, R., Paganoni, S. and Walsh, C.J. (2020). Improving Grasp
Function After Spinal Cord Injury With a Soft Robotic Glove, IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 28(6),
1407–1415.

142

[176] Rountree, D. and Castrillo, I. (2013). The basics of cloud computing:
Understanding the fundamentals of cloud computing in theory and
practice, Newnes.

[177] Buyya, R., Vecchiola, C. and Selvi, S.T. (2013). Mastering cloud computing:
foundations and applications programming, Newnes.

[178] Zhang, Q., Cheng, L. and Boutaba, R. (2010). Cloud computing:
state-of-the-art and research challenges, Journal of internet services and
applications, 1, 7–18.

[179] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,
Lee, G., Patterson, D., Rabkin, A., Stoica, I. et al. (2010). A view of
cloud computing, Communications of the ACM, 53(4), 50–58.

[180] Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing.

[181] Ranjan, R. (2014). Streaming Big Data Processing in Datacenter Clouds, IEEE
Cloud Computing, 1(1), 78–83.

[182] Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S. and Morrow, M.
(2009). Blueprint for the intercloud-protocols and formats for cloud
computing interoperability, 2009 fourth international conference on
Internet and web applications and services, IEEE, pp.328–336.

[183] Hsiao, H.C., Chung, H.Y., Shen, H. and Chao, Y.C. (2012). Load rebalancing
for distributed file systems in clouds, IEEE transactions on parallel and
distributed systems, 24(5), 951–962.

[184] Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data processing on
large clusters, Communications of the ACM, 51(1), 107–113.

[185] Kandukuri, B.R., V., R.P. and Rakshit, A. (2009). Cloud Security Issues, 2009
IEEE International Conference on Services Computing, pp.517–520.

[186] Vogels, W. (2009). Eventually consistent, Communications of the ACM, 52(1),
40–44.

[187] Satyanarayanan, M. (2017). The Emergence of Edge Computing, Computer,
50(1), 30–39.

[188] Takabi, H., Joshi, J.B. and Ahn, G.J. (2010). Security and Privacy Challenges in
Cloud Computing Environments, IEEE Security & Privacy, 8(6), 24–31.

[189] Subashini, S. and Kavitha, V. (2011). A survey on security issues in service
delivery models of cloud computing, Journal of Network and Computer
Applications, 34(1), 1–11.

[190] Vaquero, L.M., Rodero-Merino, L., Caceres, J. and Lindner, M. (2009). A
break in the clouds: towards a cloud definition, SIGCOMM Computer
Communication Review, 39(1), 50–55.

143

[191] Berisha, B., Mëziu, E. and Shabani, I. (2022). Big data analytics in Cloud
computing: an overview, Journal of Cloud Computing, 11(1), 24.

[192] Kim, H., Kim, J., Kim, Y., Kim, I. and Kim, K.J. (2019). Design of network
threat detection and classification based on machine learning on cloud
computing, Cluster Computing, 22, 2341–2350.

[193] Belgaum, M.R., Alansari, Z., Musa, S., Alam, M.M. and Mazliham, M.
(2021). Role of artificial intelligence in cloud computing, IoT and SDN:
Reliability and scalability issues, International Journal of Electrical and
Computer Engineering, 11(5), 4458.

[194] Rajabion, L., Shaltooki, A.A., Taghikhah, M., Ghasemi, A. and Badfar,
A. (2019). Healthcare big data processing mechanisms: The role of
cloud computing, International Journal of Information Management, 49,
271–289.

[195] Zhang, P., Yu, K., Yu, J.J. and Khan, S.U. (2018). QuantCloud: Big Data
Infrastructure for Quantitative Finance on the Cloud, IEEE Transactions
on Big Data, 4(3), 368–380.

[196] Haroun, A., Mostefaoui, A. and Dessables, F. (2017). A Big Data Architecture
for Automotive Applications: PSA Group Deployment Experience, 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp.921–928.

[197] Zeng, Y., Ouyang, S., Zhu, T. and Li, C. (2022). E-Commerce Network Security
Based on Big Data in Cloud Computing Environment, Mobile Information
Systems, 2022(1), 9935244.

[198] Chen, J., Li, K., Rong, H., Bilal, K., Yang, N. and Li, K. (2018). A disease
diagnosis and treatment recommendation system based on big data mining
and cloud computing, Information Sciences, 435, 124–149.

[199] Lahoura, V., Singh, H., Aggarwal, A., Sharma, B., Mohammed,
M.A., Damaševičius, R., Kadry, S. and Cengiz, K. (2021). Cloud
Computing-Based Framework for Breast Cancer Diagnosis Using
Extreme Learning Machine, Diagnostics, 11(2), 241.

[200] Cui, Q., Wang, Y., Chen, K.C., Ni, W., Lin, I.C., Tao, X. and Zhang, P.
(2019). Big Data Analytics and Network Calculus Enabling Intelligent
Management of Autonomous Vehicles in a Smart City, IEEE Internet of
Things Journal, 6(2), 2021–2034.

[201] Ye, Z. and Ying, R. (2024). An AI-aware Orchestration Framework for
Cloud-based LLM Workloads, 2024 IEEE 10th International Conference
on Edge Computing and Scalable Cloud (EdgeCom), pp.22–24.

[202] Stergiou, C., Psannis, K.E., Kim, B.G. and Gupta, B. (2018). Secure
integration of IoT and Cloud Computing, Future Generation Computer
Systems, 78, 964–975.

144

[203] Celesti, A., Lay-Ekuakille, A., Wan, J., Fazio, M., Celesti, F., Romano, A.,
Bramanti, P. and Villari, M. (2020). Information management in IoT
cloud-based tele-rehabilitation as a service for smart cities: Comparison
of NoSQL approaches, Measurement, 151, 107218.

[204] Tahir, A., Chen, F., Khan, H.U., Ming, Z., Ahmad, A., Nazir, S. and Shafiq, M.
(2020). A Systematic Review on Cloud Storage Mechanisms Concerning
e-Healthcare Systems, Sensors, 20(18), 5392.

[205] Tan, M. and Su, X. (2011). Media cloud: When media revolution meets rise of
cloud computing, Proceedings of 2011 IEEE 6th International Symposium
on Service Oriented System (SOSE), pp.251–261.

[206] Gadea, C., Solomon, B., Ionescu, B. and Ionescu, D. (2011). A Collaborative
Cloud-Based Multimedia Sharing Platform for Social Networking
Environments, 2011 Proceedings of 20th International Conference on
Computer Communications and Networks (ICCCN), pp.1–6.

[207] Chard, K., Caton, S., Rana, O. and Bubendorfer, K. (2010). Social Cloud:
Cloud Computing in Social Networks, 2010 IEEE 3rd International
Conference on Cloud Computing, pp.99–106.

[208] Shea, R., Liu, J., Ngai, E.C.H. and Cui, Y. (2013). Cloud gaming: architecture
and performance, IEEE Network, 27(4), 16–21.

[209] Wang, Q., Xu, K., Izard, R., Kribbs, B., Porter, J., Wang, K.C., Prakash, A.
and Ramanathan, P. (2014). GENI Cinema: An SDN-Assisted Scalable
Live Video Streaming Service, 2014 IEEE 22nd International Conference
on Network Protocols, pp.529–532.

[210] Lee, J.H., Wishkoski, R., Aase, L., Meas, P. and Hubbles, C. (2017).
Understanding users of cloud music services: Selection factors,
management and access behavior, and perceptions, Journal of the
Association for Information Science and Technology, 68(5), 1186–1200.

[211] Baldassarre, M.T., Caivano, D., Dimauro, G., Gentile, E. and Visaggio, G.
(2018). Cloud Computing for Education: A Systematic Mapping Study,
IEEE Transactions on Education, 61(3), 234–244.

[212] Han, H. and Trimi, S. (2022). Cloud Computing-based Higher Education
Platforms during the COVID-19 Pandemic, IC4E ’22, Association for
Computing Machinery, New York, NY, USA, pp.83–89.

[213] Shatalova, E.P. and Huseynov, R.M. (2021). Cloud Technologies in Banking,
Springer International Publishing, Cham, pp.41–48.

[214] Qian, L., Luo, Z., Du, Y. and Guo, L. (2009). Cloud computing: An
overview, IEEE International Conference on Cloud Computing, Springer,
pp.626–631.

145

[215] Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016). Edge computing: Vision
and challenges, IEEE internet of things journal, 3(5), 637–646.

[216] Yu, W., Liang, F., He, X., Hatcher, W.G., Lu, C., Lin, J. and Yang, X. (2017).
A survey on the edge computing for the Internet of Things, IEEE access,
6, 6900–6919.

[217] Ananthanarayanan, G., Bahl, P., Bodík, P., Chintalapudi, K., Philipose, M.,
Ravindranath, L. and Sinha, S. (2017). Real-time video analytics: The
killer app for edge computing, computer, 50(10), 58–67.

[218] Barthélemy, J., Verstaevel, N., Forehead, H. and Perez, P. (2019).
Edge-computing video analytics for real-time traffic monitoring in a smart
city, Sensors, 19(9), 2048.

[219] Wang, J., Feng, Z., Chen, Z., George, S., Bala, M., Pillai, P., Yang, S.W. and
Satyanarayanan, M. (2018). Bandwidth-efficient live video analytics
for drones via edge computing, 2018 IEEE/ACM Symposium on Edge
Computing (SEC), IEEE, pp.159–173.

[220] Zhang, Q., Sun, H., Wu, X. and Zhong, H. (2019). Edge video analytics for
public safety: A review, Proceedings of the IEEE, 107(8), 1675–1696.

[221] Hu, L., Miao, Y., Wu, G., Hassan, M.M. and Humar, I. (2019). iRobot-Factory:
An intelligent robot factory based on cognitive manufacturing and edge
computing, Future Generation Computer Systems, 90, 569–577.

[222] Chen, B., Wan, J., Celesti, A., Li, D., Abbas, H. and Zhang, Q. (2018). Edge
computing in IoT-based manufacturing, IEEE Communications Magazine,
56(9), 103–109.

[223] Wang, H., Gong, J., Zhuang, Y., Shen, H. and Lach, J. (2017). Healthedge:
Task scheduling for edge computing with health emergency and
human behavior consideration in smart homes, 2017 IEEE International
Conference on Big Data (Big Data), IEEE, pp.1213–1222.

[224] Oueida, S., Kotb, Y., Aloqaily, M., Jararweh, Y. and Baker, T. (2018). An edge
computing based smart healthcare framework for resource management,
Sensors, 18(12), 4307.

[225] Sodhro, A.H., Luo, Z., Sangaiah, A.K. and Baik, S.W. (2019). Mobile edge
computing based QoS optimization in medical healthcare applications,
International Journal of Information Management, 45, 308–318.

[226] Dong, P., Ning, Z., Obaidat, M.S., Jiang, X., Guo, Y., Hu, X., Hu, B. and
Sadoun, B. (2020). Edge computing based healthcare systems: Enabling
decentralized health monitoring in Internet of medical Things, IEEE
Network, 34(5), 254–261.

146

[227] Luo, H., Cai, H., Yu, H., Sun, Y., Bi, Z. and Jiang, L. (2019). A short-term
energy prediction system based on edge computing for smart city, Future
Generation Computer Systems, 101, 444–457.

[228] Petrovic, N. and Kocic, D. (2019). Adopting linear optimization to support
autonomous vehicles in smart city, 2019 27th Telecommunications Forum
(TELFOR), IEEE, pp.1–4.

[229] Zhou, S. and Zhang, L. (2018). Smart home electricity demand forecasting
system based on edge computing, 2018 IEEE 9th International
Conference on Software Engineering and Service Science (ICSESS), IEEE,
pp.164–167.

[230] Sahni, Y., Cao, J. and Yang, L. (2018). Data-aware task allocation for achieving
low latency in collaborative edge computing, IEEE Internet of Things
Journal, 6(2), 3512–3524.

[231] Tran, T.X., Hajisami, A., Pandey, P. and Pompili, D. (2017). Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges, IEEE Communications Magazine, 55(4), 54–61.

[232] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S. (2012). Fog Computing and
Its Role in the Internet of Things, Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, Association for
Computing Machinery, pp.13–16.

[233] Minh, Q.T., Tran, C.M., Le, T.A., Nguyen, B.T., Tran, T.M. and
Balan, R.K. (2018). FogFly: A Traffic Light Optimization Solution
Based on Fog Computing, Proceedings of the 2018 ACM International
Joint Conference and 2018 International Symposium on Pervasive
and Ubiquitous Computing and Wearable Computers, UbiComp ’18,
Association for Computing Machinery, pp.1130–1139.

[234] Tang, C., Xia, S., Zhu, C. and Wei, X. (2019). Phase Timing Optimization
for Smart Traffic Control Based on Fog Computing, IEEE Access, 7,
84217–84228.

[235] Jang, H.C. and Lin, T.K. (2018). Traffic-Aware Traffic Signal Control
Framework Based on SDN and Cloud-Fog Computing, 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall), pp.1–5.

[236] Serdaroglu, K.C., Baydere, c., Saovapakhiran, B. and Charnsripinyo, C.
(2023). Location Aware Fog Computing Based Air Quality Monitoring
System, 2023 International Conference on Smart Applications, Commu-
nications and Networking (SmartNets), pp.1–6.

[237] Aliyu, F., Abdeen, M.A.R., Sheltami, T., Alfraidi, T. and Ahmed, M.H. (2023).
Fog computing-assisted path planning for smart shopping, Multimedia
Tools and Applications, 82, 38827–38852.

147

[238] Talaat, F.M. and ZainEldin, H. (2023). An improved fire detection approach
based on YOLO-v8 for smart cities, Neural Computing and Applications,
35(28), 20939–20954.

[239] Sodhro, A.H., Sodhro, G.H., Guizani, M., Pirbhulal, S. and Boukerche,
A. (2020). AI-Enabled Reliable Channel Modeling Architecture for Fog
Computing Vehicular Networks, IEEE Wireless Communications, 27(2),
14–21.

[240] Zhang, Y., Zhang, H., Long, K., Zheng, Q. and Xie, X. (2018).
Software-Defined and Fog-Computing-Based Next Generation Vehicular
Networks, IEEE Communications Magazine, 56(9), 34–41.

[241] Ning, Z., Huang, J. and Wang, X. (2019). Vehicular Fog Computing:
Enabling Real-Time Traffic Management for Smart Cities, IEEE Wireless
Communications, 26(1), 87–93.

[242] Wang, H., Gong, Y., Ding, Y., Tang, S. and Wang, Y. (2023).
Privacy-Preserving Data Aggregation with Dynamic Billing in Fog-Based
Smart Grid, Applied Sciences, 13(2), 748.

[243] Jaiswal, R., Davidrajuh, R. and Wondimagegnehu, S.M. (2021). Fog
Computing for Efficient Predictive Analysis in Smart Grids, Proceedings
of the International Conference on Artificial Intelligence and Its
Applications, icARTi ’21, Association for Computing Machinery, pp.1 –
6.

[244] Forcan, M. and Maksimović, M. (2020). Cloud-Fog-based approach for Smart
Grid monitoring, Simulation Modelling Practice and Theory, 101, 101988.

[245] Li, Z., Liu, Y., Xin, R., Gao, L., Ding, X. and Hu, Y. (2019). A Dynamic
Game Model for Resource Allocation in Fog Computing for Ubiquitous
Smart Grid, 2019 28th Wireless and Optical Communications Conference
(WOCC), pp.1–5.

[246] Silva, F.A., Fé, I., Brito, C., Araújo, G., Feitosa, L., Choi, E., Min, D.
and Nguyen, T.A. (2022). Supporting availability evaluation of a smart
building monitoring system aided by fog computing, Electronics Letters,
58(12), 471–473.

[247] Bhatia, M. (2020). Fog Computing-inspired Smart Home Framework for
Predictive Veterinary Healthcare, Microprocessors and Microsystems, 78,
103227.

[248] Gill, S.S., Garraghan, P. and Buyya, R. (2019). ROUTER: Fog enabled cloud
based intelligent resource management approach for smart home IoT
devices, Journal of Systems and Software, 154, 125–138.

[249] Hassen, H.B., Dghais, W. and Hamdi, B. (2019). An E-health system for
monitoring elderly health based on Internet of Things and Fog computing,
Health Information Science and Systems, 7(1), 24.

148

[250] Kamruzzaman, M., Alanazi, S., Alruwaili, M., Alrashdi, I., Alhwaiti, Y. and
Alshammari, N. (2022). Fuzzy-assisted machine learning framework for
the fog-computing system in remote healthcare monitoring, Measurement,
195, 111085.

[251] Arunkumar, P.M., Masud, M., Aljahdali, S. and Abouhawwash, M.
(2023). Healthcare Monitoring Using Ensemble Classifiers in Fog
Computing Framework, Computer Systems Science and Engineering,
45(2), 2265–2280.

[252] Almas, A., Iqbal, W., Altaf, A., Saleem, K., Mussiraliyeva, S. and Iqbal,
M.W. (2023). Context-Based Adaptive Fog Computing Trust Solution for
Time-Critical Smart Healthcare Systems, IEEE Internet of Things Journal,
10(12), 10575–10586.

[253] Beri, R., Dubey, M.K., Gehlot, A., Singh, R., Abd-Elnaby, M. and Singh,
A. (2021). A novel fog-computing-assisted architecture of E-healthcare
system for pregnant women, The Journal of Supercomputing, 78(6),
7591–7615.

[254] Klonoff, D.C. (2017). Fog Computing and Edge Computing Architectures for
Processing Data From Diabetes Devices Connected to the Medical Internet
of Things, Journal of Diabetes Science and Technology, 11(4), 647–652.

[255] Monteiro, A., Dubey, H., Mahler, L., Yang, Q. and Mankodiya, K. (2016).
Fit: A Fog Computing Device for Speech Tele-Treatments, 2016 IEEE
International Conference on Smart Computing (SMARTCOMP), pp.1–3.

[256] Paul, A., Pinjari, H., Hong, W.H., Seo, H.C. and Rho, S. (2018). Fog
Computing-Based IoT for Health Monitoring System, Journal of Sensors,
2018(1), 1386470.

[257] Mani, N., Singh, A. and Nimmagadda, S.L. (2020). An IoT Guided
Healthcare Monitoring System for Managing Real-Time Notifications by
Fog Computing Services, Procedia Computer Science, 167, 850–859.

[258] Moghadas, E., Rezazadeh, J. and Farahbakhsh, R. (2020). An IoT patient
monitoring based on fog computing and data mining: Cardiac arrhythmia
usecase, Internet of Things, 11, 100251.

[259] Jeevan Kharel, H.T.R. and Shin, S.Y. (2019). Fog Computing-Based Smart
Health Monitoring System Deploying LoRa Wireless Communication,
IETE Technical Review, 36(1), 69–82.

[260] Ijaz, M., Li, G., Wang, H., El-Sherbeeny, A.M., Moro Awelisah, Y., Lin,
L., Koubaa, A. and Noor, A. (2020). Intelligent Fog-Enabled Smart
Healthcare System for Wearable Physiological Parameter Detection,
Electronics, 9(12), 2015.

149

[261] Tuli, S., Mahmud, R., Tuli, S. and Buyya, R. (2019). FogBus: A
Blockchain-based Lightweight Framework for Edge and Fog Computing,
Journal of Systems and Software, 154, 22–36.

[262] Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya, R.C., Wander, G.S.
and Buyya, R. (2020). HealthFog: An ensemble deep learning based
Smart Healthcare System for Automatic Diagnosis of Heart Diseases
in integrated IoT and fog computing environments, Future Generation
Computer Systems, 104, 187–200.

[263] Medina, J., Espinilla, M., Zafra, D., Martínez, L. and Nugent, C. (2017).
Fuzzy Fog Computing: A Linguistic Approach for Knowledge Inference
in Wearable Devices, S.F. Ochoa, P. Singh and J. Bravo, editors,
Ubiquitous Computing and Ambient Intelligence, Springer International
Publishing, Cham, pp.473–485.

[264] Constant, N., Borthakur, D., Abtahi, M., Dubey, H. and Mankodiya,
K. (2017). Fog-Assisted wIoT: A Smart Fog Gateway for End-to-End
Analytics in Wearable Internet of Things, CoRR, abs/1701.08680, 1701.
08680.

[265] Resisitve Flex Sensors - Spectra Symbol, https://www.spectrasymbol.
com/resistive-flex-sensors, [Accessed 03-01-2024].

[266] Wu, W., Pirbhulal, S., Sangaiah, A.K., Mukhopadhyay, S.C. and Li,
G. (2018). Optimization of signal quality over comfortability of
textile electrodes for ECG monitoring in fog computing based medical
applications, Future Generation Computer Systems, 86, 515–526.

[267] Veness, C. Calculate distance and bearing between two Latitude/Longitude
points using haversine formula in JavaScript, https://www.
movable-type.co.uk/scripts/latlong.html, [Accessed
13-09-2023].

[268] Coffey, J. (2017). Latency in optical fiber systems, https:
//www.commscope.com/globalassets/digizuite/
2799-latency-in-optical-fiber-systems-wp-111432-en.
pdf.

[269] Gamma, E. (1995). Design patterns, Pearson Education India.

[270] Ruys, W., Lee, H., You, B., Talati, S., Park, J., Almgren-Bell, J., Yan, Y.,
Fernando, M., Biros, G., Erez, M., Burtscher, M., Rossbach, C.J.,
Pingali, K. and Gligoric, M. (2024). A Deep Dive into Task-Based
Parallelism in Python, 2024 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp.1147–1149.

[271] Sethi, D., Bharti, S. and Prakash, C. (2022). A comprehensive survey on gait
analysis: History, parameters, approaches, pose estimation, and future
work, Artificial Intelligence in Medicine, 129, 102314.

150

[272] Han, Y.C., Wong, K.I. and Murray, I. (2019). Gait Phase Detection for
Normal and Abnormal Gaits Using IMU, IEEE Sensors Journal, 19(9),
3439–3448.

[273] Romijnders, R., Warmerdam, E., Hansen, C., Welzel, J., Schmidt, G.
and Maetzler, W. (2021). Validation of IMU-based gait event detection
during curved walking and turning in older adults and parkinson’s disease
patients, Journal of NeuroEngineering and Rehabilitation, 18(1), 28.

[274] Negi, S., Sharma, S. and Sharma, N. (2021). FSR and IMU sensors-based
human gait phase detection and its correlation with EMG signal for
different terrain walk, Sensor Review, 41(3), 235–245.

[275] Gujarathi, T. and Bhole, K. (2019). GAIT ANALYSIS USING IMU SENSOR,
2019 10th International Conference on Computing, Communication and
Networking Technologies (ICCCNT), pp.1–5.

[276] Yu, Y., Si, X., Hu, C. and Zhang, J. (2019). A Review of Recurrent Neural
Networks: LSTM Cells and Network Architectures, Neural Computation,
31(7), 1235–1270.

[277] Wang, K., Kong, S., Chen, X. and Zhao, M. (2024). Edge Computing
Empowered Smart Healthcare: Monitoring and Diagnosis with Deep
Learning Methods, Journal of Grid Computing, 22(1), 30.

[278] Ozlem, K., Atalay, A.T., Atalay, O. and Ince, G. (2024). FogETex: Fog
Computing Framework for Electronic Textile Applications, IEEE Internet
of Things Journal, Early Access.

[279] StandardScaler - scikit-learn.org, https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.
StandardScaler.html, [Accessed 25-08-2024].

[280] Milcic, D., Vucina, A. and Bosnjak, M. (2023). Ergonomic Design of
the Hand Saw Handle, I. Salopek Čubrić, G. Čubrić, K. Jambrošić,
T. Jurčević Lulić and D. Sumpor, editors, Proceedings of the 9th
International Ergonomics Conference, Springer Nature Switzerland,
Cham, pp.231–239.

151

152

APPENDICES

APPENDIX A : Assistive Soft Robotic Glove Control Supporting Information

153

154

APPENDIX A : Assistive Soft Robotic Glove Control Supporting Information

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

20194 6762 5 1406

2640 47193 1200 3349

21 4219 19431 4571

759 4952 2354 40499

10000

20000

30000

40000

(a) Thumb Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

16525 2647 4 789

1555 36437 752 438

0 1737 17027 1624

852 913 1429 29977

0

5000

10000

15000

20000

25000

30000

35000

(b) Index Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

17208 2379 0 743

1433 35601 714 293

0 1519 17407 1633

783 112 1314 30069

0

5000

10000

15000

20000

25000

30000

35000

(c) Middle Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l
16719 2380 0 721

1489 36011 625 720

0 1609 16800 1555

680 698 1370 29129

0

5000

10000

15000

20000

25000

30000

35000

(d) Ring Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

16134 2780 0 779

1511 35912 769 716

0 1493 16409 1734

397 1059 1327 29874

0

5000

10000

15000

20000

25000

30000

35000

(e) Pinkie Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

86780 16948 9 4438

8628 191154 4060 5516

21 10577 87074 11117

3471 7734 7794 159548 25000

50000

75000

100000

125000

150000

175000

(f) Overall Results.

Figure A.1 : Confusion Matrices of Logistic Regression Classifier for Different
Fingers.

155

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

25924 1757 4 682

2146 50784 1189 263

10 2364 24238 1630

727 632 2150 45055
10000

20000

30000

40000

50000

(a) Thumb Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18706 901 3 355

1009 37515 656 2

0 733 18729 926

457 5 1051 31658

0

5000

10000

15000

20000

25000

30000

35000

(b) Index Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

19023 884 0 423

1103 36315 623 0

0 663 19045 851

459 1 1150 30668

0

5000

10000

15000

20000

25000

30000

35000

(c) Middle Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18508 945 0 367

1011 37146 688 0

0 763 18407 794

425 0 1044 30408

0

5000

10000

15000

20000

25000

30000

35000

(d) Ring Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18353 898 0 442

1024 37240 641 3

0 674 18053 909

384 7 1033 31233

0

5000

10000

15000

20000

25000

30000

35000

(e) Pinkie Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

100514 5385 7 2269

6293 199000 3797 268

10 5197 98472 5110

2452 645 6428 169022 25000

50000

75000

100000

125000

150000

175000

(f) Overall Results.

Figure A.2 : Confusion Matrices of Decision Tree Classifier for Different Fingers.

156

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

25265 2221 7 874

3059 49398 1446 479

26 2509 23641 2066

905 943 2899 43817
10000

20000

30000

40000

(a) Thumb Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18364 1126 6 469

1500 36794 783 105

0 766 18548 1074

531 49 1511 31080

0

5000

10000

15000

20000

25000

30000

35000

(b) Index Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18745 1141 0 444

1602 35637 768 34

0 731 18864 964

550 18 1494 30216

0

5000

10000

15000

20000

25000

30000

35000

(c) Middle Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l
18227 1184 0 409

1450 36466 850 79

0 846 18185 933

466 83 1369 29959

0

5000

10000

15000

20000

25000

30000

35000

(d) Ring Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

17925 1270 0 498

1564 36545 744 55

0 721 17992 923

425 57 1453 30722

0

5000

10000

15000

20000

25000

30000

35000

(e) Pinkie Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

98526 6942 13 2694

9175 194840 4591 752

26 5573 97230 5960

2877 1150 8726 165794 25000

50000

75000

100000

125000

150000

175000

(f) Overall Results.

Figure A.3 : Confusion Matrices of K-Nearest Neighbors Classifier for Different
Fingers.

157

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

24106 2894 7 1360

3446 47091 1579 2266

26 2978 21567 3671

1371 3191 2526 41476

10000

20000

30000

40000

(a) Thumb Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

17961 1303 2 699

2061 35638 1043 440

0 1083 18145 1160

449 114 1534 31074

0

5000

10000

15000

20000

25000

30000

35000

(b) Index Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18644 1234 0 452

1917 35102 947 75

0 908 18450 1201

729 42 1388 30119

0

5000

10000

15000

20000

25000

30000

35000

(c) Middle Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18092 1286 0 442

1928 35530 827 560

0 1055 17632 1277

678 94 1226 29879

0

5000

10000

15000

20000

25000

30000

35000

(d) Ring Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

17696 1450 0 547

1897 35612 871 528

0 992 17632 1012

466 431 1589 30171

0

5000

10000

15000

20000

25000

30000

35000

(e) Pinkie Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

96499 8167 9 3500

11249 188973 5267 3869

26 7016 93426 8321

3693 3872 8263 162719 25000

50000

75000

100000

125000

150000

175000

(f) Overall Results.

Figure A.4 : Confusion Matrices of Multi-layer Perceptron Classifier for Different
Fingers.

158

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

25872 1798 4 693

1833 51000 1270 279

16 2195 24455 1576

676 608 1925 45355
10000

20000

30000

40000

50000

(a) Thumb Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18654 932 3 376

933 37548 697 4

0 661 18807 920

403 2 891 31875

0

5000

10000

15000

20000

25000

30000

35000

(b) Index Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

19047 858 0 425

996 36389 647 9

0 624 19116 819

426 0 939 30913

0

5000

10000

15000

20000

25000

30000

35000

(c) Middle Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l
18493 940 0 387

905 37213 725 2

0 699 18489 776

379 1 878 30619

0

5000

10000

15000

20000

25000

30000

35000

(d) Ring Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

18376 870 0 447

896 37338 669 5

0 595 18267 774

352 2 877 31426

0

5000

10000

15000

20000

25000

30000

35000

(e) Pinkie Finger.

Opening Open Closing Close
Predicted label

Opening

Open

Closing

Close

Tr
ue

 la
be

l

100442 5398 7 2328

5563 199488 4008 299

16 4774 99134 4865

2236 613 5510 170188 25000

50000

75000

100000

125000

150000

175000

(f) Overall Results.

Figure A.5 : Confusion Matrices of XGBoost Classifier for Different Fingers.

159

160

CURRICULUM VITAE

Name SURNAME: Kadir ÖZLEM

EDUCATION:

• M.Sc.: 2018, Istanbul Technical University, Graduate School of Science
Engineering and Technology, Computer Engineering

• B.Sc.: 2016, Istanbul University, Engineering Faculty, Computer Engineering
(Double Major)

• B.Sc.: 2016, Istanbul University, Engineering Faculty, Electrical-Electronics
Engineering

• B.Sc.: 2016, Anadolu University, Faculty of Business Administration, Business
Administration

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2018-... Research Assistant on Computer Engineering Department, Istanbul
Technical University

• 2016-2018 Pinnera - Software Engineer

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Ozlem, K., Gumus, C., Yilmaz, A.F., Atalay, A. T., Atalay, O., Ince, G.
Cloud-based Control System with Sensing and Actuating Textile-based IoT
Gloves for Telerehabilitation Applications. Advanced Intelligent Systems, doi:
10.1002/aisy.202400894, to appear.

• Ozlem, K., Atalay, A. T., Atalay, O., Ince, G. FogETex: Fog Computing
Framework for Electronic Textile Applications. IEEE Internet of Things Journal,
doi: 10.1109/JIOT.2024.3490981, to appear.

• Erzurumluoglu, O.F., Ozlem, K., Atalay, A. T., Atalay, O., Ince, G. Fog
Computing-based Real-Time Emotion Recognition using Physiological Signals,
Proceedings of International Conference on Advanced Communication Technology
(ICACT2025), to appear.

• Özlem, K., Kuyucu, M. K., Bahtiyar, Ş., İnce, G. (2019, September). Security
and Privacy Issues for E-textile Applications. 2019 4th International Conference
on Computer Science and Engineering (UBMK), September 11-15, 2019, Samsun,
Turkey, pp. 102-107.

161

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:

• Celik, I., Cetin, M.S., Ozlem, K., Atalay, O., Atalay, A.T., Ince, G. (2024). Gesture
Recognition on Textile-Based Pressure Sensor Array. 2024 5th International
Conference in Electronic Engineering, Information Technology & Education
(EEITE), May 29-31, 2024, Chania, Greece, 2024, pp. 1-5.

• Yilmaz, A.F., Ozlem, K., Celebi, M.F., Taherkhani, B., Kalaoglu, F., Atalay, A.,
Ince G., Atalay, O. (2024), Design and Scalable Fast Fabrication of Biaxial Fabric
Pouch Motors for Soft Robotic Artificial Muscle Applications, Advanced Intelligent
Systems, 6(8), 2300888.

• Atalay, O., Ozlem, K., Gumus, G., Ahmed, I.A.K., Yilmaz, A.F., Celebi, M.F.,
Cetin, M.S., Taherkhani, B., Atalay, A.T., Ince, G. (2024), Thermally Driven 3D
Seamless Textile Actuators for Soft Robotic Applications, Advanced Intelligent
Systems, 6(11), 2400133.

• Yunculer, I., Al-Azzawi, N. Ayvaz, U., Cetin, M. S., Ozlem, K., Atalay, A. T.,
Ince, G., Atalay, O. (2024). A Seamless T-shirt Design with Textile-based ECG
Electrodes and Posture Monitoring Sensors, Association of Universities for Textiles
Conference (AUTEX 2024), June 17-9, 2024, Liberec, Czech Republic.

• Erzurumluoglu, O.F., Ozlem, K., Tunc, H., Gumus, C., Khalilbayli, F., Buyukaslan,
A., Yilmaz, H., Tuncay Atalay, A., Atalay, O., Ince, G. (2024). A Pressure
Monitoring for Scoliosis Braces using Textile-based Pressure Sensor Arrays. 2023
12th HCist - International Conference on Health and Social Care Information
Systems and Technologies, Procedia Computer Science, November 08-10, 2023,
Porto, Portugal, 239, 1409-1416.

• Yilmaz, A. F., Ozlem, K., Khalilbayli, F., Celebi, M. F., Kalaoglu, F., Atalay, A.
T., Ince, G., Atalay, O. (2023). Resistive Self-Sensing Controllable Fabric-Based
Actuator: A Novel Approach to Creating Anisotropy. Advanced Sensor Research,
3(7), 2300108.

• Ayvaz, U., Ozlem, K., Yilmaz, A. F., Atalay, A. T., Atalay, O., Ince, G. (2024).
Real-time Stride Length Estimation using Textile-Based Capacitive Soft Strain
Sensors. IEEE Transactions on Instrumentation and Measurement, 73, pp. 1-11.

• Yilmaz, A. F., Ahmed, I. A. K., Gumus, C., Ozlem, K., Cetin, M. S., Atalay, A. T.,
Ince, G., Atalay, O. (2023). Highly Stretchable Textile Knitted Interdigital Sensor
for Wearable Technology Applications. Advanced Sensor Research, 3(2), 2300121.

• Gumus, C., Ozlem, K., Khalilbayli, F., Atalay, A. T., Onal, E., Ince, G.,
Atalay, O., Erzurumluoglu, O. F. (2023). Textile-based large-area pressure sensing
arrays (Tekstil Tabanlı Geniş Alanlı Basınç Algılama Dizileri). Patent Number:
TR2022/004079 and WO2023177380A1.

162

• Pazar, A., Khalilbayli, F., Ozlem, K., Yilmaz, A. F., Atalay, A. T., Atalay,
O., İnce, G. (2022). Gait Phase Recognition using Textile-based Sensor. 2022
7th International Conference on Computer Science and Engineering (UBMK),
September 14-16, 2022, Diyarbakir, Turkey, pp. 1-6.

• Elmoughni, H. M., Atalay, O., Ozlem, K., Menon, A. K. (2022). Thermoelectric
Clothing for Body Heat Harvesting and Personal Cooling: Design and Fabrication
of a Textile-Integrated Flexible and Vertical Device. Energy Technology, 10(10),
2200528.

• Yilmaz, A. F., Khalilbayli, F., Ozlem, K., Elmoughni, H. M., Kalaoglu, F., Atalay,
A. T., Ince, G., Atalay, O. (2022). Effect of Segment Types on Characterization of
Soft Sensing Textile Actuators for Soft Wearable Robots. Biomimetics, 7(4), 249.

• Yilmaz, A. F., Ozlem, K., Khalilbayli, F., Elmoughni, H. M., Atalay, A. T., Ince,
G., Atalay, O. (2022). Actuators for soft robotic applications (Tekstil Tabanlı
Geniş Alanlı Basınç Algılama Dizileri). Patent Number: TR2021/007340 and
WO2023177380A1.

• Yilmaz, A. F., Ozlem, K., Cetin, M. S., Atalay, A. T., Ince, G., Atalay, O.
(2022). Knitted Interdigital Capacitive Strain Sensor for Wearable Applications,
Association of Universities for Textiles Conference (AUTEX 2022), June 7-10, 2022,
Lodz, Poland.

• Gumus, C., Ozlem, K., Khalilbayli, F., Erzurumluoglu, O. F., Ince, G., Atalay,
O., Atalay, A. T. (2022). Textile-based pressure sensor arrays: A novel scalable
manufacturing technique. Micro and Nano Engineering, 15, 100140.

• Yilmaz, A. F., Ozlem, K., Elmoughni, H., Cappello, L., Atalay, A. T., Ince,
G., Atalay, O. (2022). A Textile-based, Sensorized Pneumatic Actuator for
Soft-robotics Applications, Association of Universities for Textiles Conference
(AUTEX 2021), September 5-9, 2021, Guimarães, Portugal.

• Elmoughni, H. M., Yilmaz, A. F., Ozlem, K., Khalilbayli, F., Cappello, L., Atalay,
A. T., Ince, G., Atalay, O. (2021). Machine-Knitted Seamless Pneumatic Actuators
for Soft Robotics: Design, Fabrication, and Characterization. Actuators, 10(5), 94.

• Paket, E., Ozlem, K., Elmoughni, H., Atalay, A., Atalay, O., Ince, G. (2020). ECG
Monitoring System Using Textile Electrodes. 2020 28th Signal Processing and
Communications Applications Conference (SIU), October 05-07, 2020, Gaziantep,
Turkey, pp. 1-4.

• Sevinc, H., Ayvaz, U., Ozlem, K., Elmoughni, H., Atalay, A., Atalay, O., Ince,
G. (2020). Step Length Estimation Using Sensor Fusion. 2020 IEEE International
Conference on Flexible and Printable Sensors and Systems (FLEPS), August 16-19,
2020, Manchester, United Kingdom, pp. 1-4.

• Kuyucu, C. F., Ayvaz, U., Özlem, K., Atalay, A., Atalay, Ö., İnce, G. (2019,
September). Comparative Assessment of Knee Motion Monitoring Technologies.
2019 4th International Conference on Computer Science and Engineering (UBMK),
September 11-15, 2019, Samsun, Turkey, pp. 155-160.

163

• Ozlem, K., Atalay, O., Atalay, A. and Ince, G. (2019). Textile Based Sensing
System for Lower Limb Motion Monitoring, L. Masia, S. Micera, M. Akay
and J.L. Pons, editors, Converging Clinical and Engineering Research on
Neurorehabilitation III, Springer International Publishing, Cham, pp.395–399.

164

